Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the equation of the exponential function \( f(x) \) from the given table, we need to identify the form of the exponential function:
[tex]\[ f(x) = A \cdot B^x \][/tex]
Here, \( A \) and \( B \) are constants we need to find. The table of values given is:
[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline -2 & 32 \\ \hline -1 & 16 \\ \hline 0 & 8 \\ \hline 1 & 4 \\ \hline 2 & 2 \\ \hline 3 & 1 \\ \hline \end{array} \][/tex]
Let's find \( A \) and \( B \) step-by-step:
1. Finding \( A \):
The value \( A \) can be found by looking at \( f(0) \):
[tex]\[ f(0) = A \cdot B^0 = A \][/tex]
Given \( f(0) = 8 \):
[tex]\[ A = 8 \][/tex]
2. Finding \( B \):
Next, we use two consecutive points from the table to determine \( B \). Let's use \( x = 1 \) and \( x = 0 \) for simplicity:
[tex]\[ f(1) = A \cdot B^1 = 8 \cdot B \][/tex]
Given \( f(1) = 4 \):
[tex]\[ 8 \cdot B = 4 \][/tex]
Solving for \( B \):
[tex]\[ B = \frac{4}{8} = 0.5 \][/tex]
Putting these values of \( A \) and \( B \) together, the equation for the exponential function is:
[tex]\[ f(x) = 8 \cdot (0.5)^x \][/tex]
Therefore, the complete function is:
[tex]\[ f(x) = 8 \cdot 0.5^x \][/tex]
[tex]\[ f(x) = A \cdot B^x \][/tex]
Here, \( A \) and \( B \) are constants we need to find. The table of values given is:
[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline -2 & 32 \\ \hline -1 & 16 \\ \hline 0 & 8 \\ \hline 1 & 4 \\ \hline 2 & 2 \\ \hline 3 & 1 \\ \hline \end{array} \][/tex]
Let's find \( A \) and \( B \) step-by-step:
1. Finding \( A \):
The value \( A \) can be found by looking at \( f(0) \):
[tex]\[ f(0) = A \cdot B^0 = A \][/tex]
Given \( f(0) = 8 \):
[tex]\[ A = 8 \][/tex]
2. Finding \( B \):
Next, we use two consecutive points from the table to determine \( B \). Let's use \( x = 1 \) and \( x = 0 \) for simplicity:
[tex]\[ f(1) = A \cdot B^1 = 8 \cdot B \][/tex]
Given \( f(1) = 4 \):
[tex]\[ 8 \cdot B = 4 \][/tex]
Solving for \( B \):
[tex]\[ B = \frac{4}{8} = 0.5 \][/tex]
Putting these values of \( A \) and \( B \) together, the equation for the exponential function is:
[tex]\[ f(x) = 8 \cdot (0.5)^x \][/tex]
Therefore, the complete function is:
[tex]\[ f(x) = 8 \cdot 0.5^x \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.