Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Consider the table representing an exponential function. The equation for this function is:

[tex]\[
\begin{tabular}{|r|r|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-2 & 32 \\
\hline
-1 & 16 \\
\hline
0 & 8 \\
\hline
1 & 4 \\
\hline
2 & 2 \\
\hline
3 & 1 \\
\hline
\end{tabular}
\][/tex]

[tex]\[ f(x) = \square (\square)^x \][/tex]

(Note: The placeholders [tex]\(\square\)[/tex] indicate where you need to fill in the coefficients and base for the exponential function.)


Sagot :

To determine the equation of the exponential function \( f(x) \) from the given table, we need to identify the form of the exponential function:

[tex]\[ f(x) = A \cdot B^x \][/tex]

Here, \( A \) and \( B \) are constants we need to find. The table of values given is:

[tex]\[ \begin{array}{|r|r|} \hline x & f(x) \\ \hline -2 & 32 \\ \hline -1 & 16 \\ \hline 0 & 8 \\ \hline 1 & 4 \\ \hline 2 & 2 \\ \hline 3 & 1 \\ \hline \end{array} \][/tex]

Let's find \( A \) and \( B \) step-by-step:

1. Finding \( A \):
The value \( A \) can be found by looking at \( f(0) \):

[tex]\[ f(0) = A \cdot B^0 = A \][/tex]

Given \( f(0) = 8 \):

[tex]\[ A = 8 \][/tex]

2. Finding \( B \):
Next, we use two consecutive points from the table to determine \( B \). Let's use \( x = 1 \) and \( x = 0 \) for simplicity:

[tex]\[ f(1) = A \cdot B^1 = 8 \cdot B \][/tex]

Given \( f(1) = 4 \):

[tex]\[ 8 \cdot B = 4 \][/tex]

Solving for \( B \):

[tex]\[ B = \frac{4}{8} = 0.5 \][/tex]

Putting these values of \( A \) and \( B \) together, the equation for the exponential function is:

[tex]\[ f(x) = 8 \cdot (0.5)^x \][/tex]

Therefore, the complete function is:

[tex]\[ f(x) = 8 \cdot 0.5^x \][/tex]