At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

[tex]\[
\left(-9x^4 + 4x^2 + 15 - 14x^3\right) \div \left(-x^2 - x + 2\right)
\][/tex]

Write your answer in the following form: Quotient [tex]$+\frac{\text{Remainder}}{-x^2 - x + 2}$[/tex].

[tex]\[
\frac{-9x^4 + 4x^2 + 15 - 14x^3}{-x^2 - x + 2} = \square + \frac{\square}{-x^2 - x + 2}
\][/tex]


Sagot :

To perform the polynomial division of

[tex]\[ \frac{-9 x^4 + 4 x^2 + 15 - 14 x^3}{-x^2 - x + 2}, \][/tex]

we need to follow the steps of polynomial long division.

### Step-by-Step Solution

1. Arrange the Polynomials:
The dividend (numerator) should be ordered by descending powers of \( x \):
[tex]\[ -9x^4 - 14x^3 + 4x^2 + 0x + 15. \][/tex]
The divisor (denominator) is:
[tex]\[ -x^2 - x + 2. \][/tex]

2. Divide the Leading Terms:
Divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{-9x^4}{-x^2} = 9x^2. \][/tex]

3. Multiply and Subtract:
Multiply the entire divisor by this term and subtract from the dividend:
[tex]\[ \begin{aligned} (-9x^4 - 14x^3 + 4x^2 + 0x + 15) - (9x^2 \cdot (-x^2 - x + 2)) & = (-9x^4 - 14x^3 + 4x^2 + 0x + 15) - (-9x^4 - 9x^3 + 18x^2) \\ & = 0x^4 - 5x^3 - 14x^2 + 0x + 15. \end{aligned} \][/tex]

4. Repeat the Process:
Now divide \(-5x^3\) by \(-x^2\):
[tex]\[ \frac{-5x^3}{-x^2} = 5x. \][/tex]
Multiply and subtract again:
[tex]\[ \begin{aligned} (-5x^3 - 14x^2 + 0x + 15) - (5x \cdot (-x^2 - x + 2)) & = (-5x^3 - 14x^2 + 0x + 15) - (-5x^3 - 5x^2 + 10x) \\ & = 0x^3 - 9x^2 - 10x + 15. \end{aligned} \][/tex]

5. Final Division and Remainder:
Now divide \(-9x^2\) by \(-x^2\):
[tex]\[ \frac{-9x^2}{-x^2} = 9. \][/tex]
Multiply and subtract:
[tex]\[ \begin{aligned} (-9x^2 - 10x + 15) - (9 \cdot (-x^2 - x + 2)) & = (-9x^2 - 10x + 15) - (-9x^2 - 9x + 18) \\ & = 0x^2 - x - 3. \end{aligned} \][/tex]

### Combining the Result

The quotient is:
[tex]\[ 9x^2 + 5x + 9. \][/tex]
The remainder is:
[tex]\[ -x - 3. \][/tex]

So, the final answer in the requested form is:
[tex]\[ 9x^2 + 5x + 9 + \frac{-x - 3}{-x^2 - x + 2}. \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.