Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To divide the polynomial \(15x^3 - 17x + 9\) by the polynomial \(3x^2 - 4\), we use polynomial long division. Here is the step-by-step solution:
1. Set up the division:
We are dividing \(15x^3 - 17x + 9\) by \(3x^2 - 4\).
2. Determine the first term of the quotient:
- Divide the leading term of the numerator \(15x^3\) by the leading term of the denominator \(3x^2\):
[tex]\[ \frac{15x^3}{3x^2} = 5x \][/tex]
- So, the first term of the quotient is \(5x\).
3. Multiply and subtract:
- Multiply the entire denominator \(3x^2 - 4\) by the first term of the quotient \(5x\):
[tex]\[ 5x \cdot (3x^2 - 4) = 15x^3 - 20x \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (15x^3 - 17x + 9) - (15x^3 - 20x) = -17x + 20x + 9 = 3x + 9 \][/tex]
4. Result of the division:
- The quotient so far is \(5x\).
- The remainder is \(3x + 9\).
5. Express the final result:
- The original division problem can now be expressed as:
[tex]\[ \frac{15x^3 - 17x + 9}{3x^2 - 4} = 5x + \frac{3x + 9}{3x^2 - 4} \][/tex]
The final answer is:
[tex]\[ \frac{15x^3 - 17x + 9}{3x^2 - 4} = 5x + \frac{3x + 9}{3x^2 - 4} \][/tex]
1. Set up the division:
We are dividing \(15x^3 - 17x + 9\) by \(3x^2 - 4\).
2. Determine the first term of the quotient:
- Divide the leading term of the numerator \(15x^3\) by the leading term of the denominator \(3x^2\):
[tex]\[ \frac{15x^3}{3x^2} = 5x \][/tex]
- So, the first term of the quotient is \(5x\).
3. Multiply and subtract:
- Multiply the entire denominator \(3x^2 - 4\) by the first term of the quotient \(5x\):
[tex]\[ 5x \cdot (3x^2 - 4) = 15x^3 - 20x \][/tex]
- Subtract this from the original polynomial:
[tex]\[ (15x^3 - 17x + 9) - (15x^3 - 20x) = -17x + 20x + 9 = 3x + 9 \][/tex]
4. Result of the division:
- The quotient so far is \(5x\).
- The remainder is \(3x + 9\).
5. Express the final result:
- The original division problem can now be expressed as:
[tex]\[ \frac{15x^3 - 17x + 9}{3x^2 - 4} = 5x + \frac{3x + 9}{3x^2 - 4} \][/tex]
The final answer is:
[tex]\[ \frac{15x^3 - 17x + 9}{3x^2 - 4} = 5x + \frac{3x + 9}{3x^2 - 4} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.