Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the inequality \((x+2)(x-3)(x+8) \leq 0\), let's go through a step-by-step process:
1. Identify the critical points:
The inequality changes its behavior at the values of \(x\) where the expression equals zero. Solve for the roots of the equation:
[tex]\[ (x+2)(x-3)(x+8) = 0 \][/tex]
The critical points are:
[tex]\[ x = -2, x = 3, x = -8 \][/tex]
2. Determine the intervals:
These critical points divide the number line into four intervals:
[tex]\[ (-\infty, -8), (-8, -2), (-2, 3), (3, \infty) \][/tex]
3. Test the sign of the expression in each interval:
Choose test points from each interval:
- For \((- \infty, -8)\), use \(x = -9\):
[tex]\[ (-9+2)(-9-3)(-9+8) = (-7)(-12)(-1) = -84 \quad \text{(negative)} \][/tex]
- For \((-8, -2)\), use \(x = -5\):
[tex]\[ (-5+2)(-5-3)(-5+8) = (-3)(-8)(3) = 72 \quad \text{(positive)} \][/tex]
- For \((-2, 3)\), use \(x = 0\):
[tex]\[ (0+2)(0-3)(0+8) = (2)(-3)(8) = -48 \quad \text{(negative)} \][/tex]
- For \((3, \infty)\), use \(x = 4\):
[tex]\[ (4+2)(4-3)(4+8) = (6)(1)(12) = 72 \quad \text{(positive)} \][/tex]
4. Include the endpoints where the expression is zero:
Since the inequality is \(\leq 0\), include the points where the expression is exactly zero:
[tex]\[ x = -8, x = -2, x = 3 \][/tex]
5. Combine the intervals where the expression is negative or zero:
The expression \((x+2)(x-3)(x+8) \leq 0\) holds in the intervals where we found either a negative value or zero:
[tex]\[ (-\infty, -8] \cup [-2, 3] \][/tex]
So, the solution to the inequality \((x+2)(x-3)(x+8) \leq 0\) is:
[tex]\[ \boxed{(-\infty, -8] \cup [-2, 3]} \][/tex]
1. Identify the critical points:
The inequality changes its behavior at the values of \(x\) where the expression equals zero. Solve for the roots of the equation:
[tex]\[ (x+2)(x-3)(x+8) = 0 \][/tex]
The critical points are:
[tex]\[ x = -2, x = 3, x = -8 \][/tex]
2. Determine the intervals:
These critical points divide the number line into four intervals:
[tex]\[ (-\infty, -8), (-8, -2), (-2, 3), (3, \infty) \][/tex]
3. Test the sign of the expression in each interval:
Choose test points from each interval:
- For \((- \infty, -8)\), use \(x = -9\):
[tex]\[ (-9+2)(-9-3)(-9+8) = (-7)(-12)(-1) = -84 \quad \text{(negative)} \][/tex]
- For \((-8, -2)\), use \(x = -5\):
[tex]\[ (-5+2)(-5-3)(-5+8) = (-3)(-8)(3) = 72 \quad \text{(positive)} \][/tex]
- For \((-2, 3)\), use \(x = 0\):
[tex]\[ (0+2)(0-3)(0+8) = (2)(-3)(8) = -48 \quad \text{(negative)} \][/tex]
- For \((3, \infty)\), use \(x = 4\):
[tex]\[ (4+2)(4-3)(4+8) = (6)(1)(12) = 72 \quad \text{(positive)} \][/tex]
4. Include the endpoints where the expression is zero:
Since the inequality is \(\leq 0\), include the points where the expression is exactly zero:
[tex]\[ x = -8, x = -2, x = 3 \][/tex]
5. Combine the intervals where the expression is negative or zero:
The expression \((x+2)(x-3)(x+8) \leq 0\) holds in the intervals where we found either a negative value or zero:
[tex]\[ (-\infty, -8] \cup [-2, 3] \][/tex]
So, the solution to the inequality \((x+2)(x-3)(x+8) \leq 0\) is:
[tex]\[ \boxed{(-\infty, -8] \cup [-2, 3]} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.