Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find out how far from the door the truck should be parked, we need to solve the given equation:
[tex]\[ l = \sqrt{d^2 + h^2} \][/tex]
where:
- \( l \) is the length of the ramp (8 feet),
- \( h \) is the height of the truck bed (2 feet),
- \( d \) is the distance from the door to where the truck should be parked.
We need to find \( d \). Let's follow the steps:
### Step-by-Step Solution
1. Write down the given information:
- Length of the ramp, \( l = 8 \) feet
- Height of the truck bed, \( h = 2 \) feet
- We need to find the distance \( d \)
2. Start with the equation:
[tex]\[ l = \sqrt{d^2 + h^2} \][/tex]
3. Substitute the known values into the equation:
[tex]\[ 8 = \sqrt{d^2 + 2^2} \][/tex]
[tex]\[ 8 = \sqrt{d^2 + 4} \][/tex]
4. Square both sides to remove the square root:
[tex]\[ 8^2 = d^2 + 4 \][/tex]
[tex]\[ 64 = d^2 + 4 \][/tex]
5. Isolate \( d^2 \):
[tex]\[ 64 - 4 = d^2 \][/tex]
[tex]\[ 60 = d^2 \][/tex]
6. Solve for \( d \):
[tex]\[ d = \sqrt{60} \][/tex]
7. Simplify or approximate the square root:
[tex]\[ d \approx 7.745966692414834 \][/tex]
Therefore, the truck should be parked approximately 7.75 feet from the door for an eight-foot ramp to reach a truck bed that is two feet above the ground.
[tex]\[ l = \sqrt{d^2 + h^2} \][/tex]
where:
- \( l \) is the length of the ramp (8 feet),
- \( h \) is the height of the truck bed (2 feet),
- \( d \) is the distance from the door to where the truck should be parked.
We need to find \( d \). Let's follow the steps:
### Step-by-Step Solution
1. Write down the given information:
- Length of the ramp, \( l = 8 \) feet
- Height of the truck bed, \( h = 2 \) feet
- We need to find the distance \( d \)
2. Start with the equation:
[tex]\[ l = \sqrt{d^2 + h^2} \][/tex]
3. Substitute the known values into the equation:
[tex]\[ 8 = \sqrt{d^2 + 2^2} \][/tex]
[tex]\[ 8 = \sqrt{d^2 + 4} \][/tex]
4. Square both sides to remove the square root:
[tex]\[ 8^2 = d^2 + 4 \][/tex]
[tex]\[ 64 = d^2 + 4 \][/tex]
5. Isolate \( d^2 \):
[tex]\[ 64 - 4 = d^2 \][/tex]
[tex]\[ 60 = d^2 \][/tex]
6. Solve for \( d \):
[tex]\[ d = \sqrt{60} \][/tex]
7. Simplify or approximate the square root:
[tex]\[ d \approx 7.745966692414834 \][/tex]
Therefore, the truck should be parked approximately 7.75 feet from the door for an eight-foot ramp to reach a truck bed that is two feet above the ground.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.