Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's solve this step by step with the given information.
1. Understand the Problem:
- You have a right triangle formed by the ramp, the height of the truck bed, and the distance from the door to the bottom of the ramp.
- The length of the ramp (the hypotenuse of the triangle) is 8 feet.
- The height of the truck bed (one leg of the triangle) is 2 feet.
- We need to find the distance from the door to the truck (the other leg of the triangle).
2. Use the Pythagorean Theorem:
- The Pythagorean Theorem states that in a right triangle, the sum of the squares of the legs is equal to the square of the hypotenuse.
- Mathematically, this is represented as:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
where \( c \) is the hypotenuse, and \( a \) and \( b \) are the legs.
3. Assign the Variables:
- Let \( c = 8 \) feet (the length of the ramp).
- Let \( a = 2 \) feet (the height of the truck bed).
- Let \( b \) be the distance from the door to the truck that we need to find.
4. Rearrange the Pythagorean Theorem to Solve for \( b \):
[tex]\[ b^2 = c^2 - a^2 \][/tex]
5. Plug in the Known Values:
[tex]\[ b^2 = 8^2 - 2^2 \][/tex]
6. Calculate the Squares:
[tex]\[ 8^2 = 64 \][/tex]
[tex]\[ 2^2 = 4 \][/tex]
7. Subtract to Find \( b^2 \):
[tex]\[ b^2 = 64 - 4 \][/tex]
[tex]\[ b^2 = 60 \][/tex]
8. Take the Square Root to Find \( b \):
[tex]\[ b = \sqrt{60} \][/tex]
9. Simplify the Square Root:
[tex]\[ \sqrt{60} \approx 7.746 \][/tex]
So, the distance from the door to where the truck should park is approximately [tex]\( 7.746 \)[/tex] feet.
1. Understand the Problem:
- You have a right triangle formed by the ramp, the height of the truck bed, and the distance from the door to the bottom of the ramp.
- The length of the ramp (the hypotenuse of the triangle) is 8 feet.
- The height of the truck bed (one leg of the triangle) is 2 feet.
- We need to find the distance from the door to the truck (the other leg of the triangle).
2. Use the Pythagorean Theorem:
- The Pythagorean Theorem states that in a right triangle, the sum of the squares of the legs is equal to the square of the hypotenuse.
- Mathematically, this is represented as:
[tex]\[ a^2 + b^2 = c^2 \][/tex]
where \( c \) is the hypotenuse, and \( a \) and \( b \) are the legs.
3. Assign the Variables:
- Let \( c = 8 \) feet (the length of the ramp).
- Let \( a = 2 \) feet (the height of the truck bed).
- Let \( b \) be the distance from the door to the truck that we need to find.
4. Rearrange the Pythagorean Theorem to Solve for \( b \):
[tex]\[ b^2 = c^2 - a^2 \][/tex]
5. Plug in the Known Values:
[tex]\[ b^2 = 8^2 - 2^2 \][/tex]
6. Calculate the Squares:
[tex]\[ 8^2 = 64 \][/tex]
[tex]\[ 2^2 = 4 \][/tex]
7. Subtract to Find \( b^2 \):
[tex]\[ b^2 = 64 - 4 \][/tex]
[tex]\[ b^2 = 60 \][/tex]
8. Take the Square Root to Find \( b \):
[tex]\[ b = \sqrt{60} \][/tex]
9. Simplify the Square Root:
[tex]\[ \sqrt{60} \approx 7.746 \][/tex]
So, the distance from the door to where the truck should park is approximately [tex]\( 7.746 \)[/tex] feet.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.