Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To analyze the function \( k(x) \) on the interval \((-\infty, 1)\), we need to focus on the piece of the function defined for \( x < 1 \). This part of the function is given as:
[tex]\[ k(x) = \frac{2}{x} \][/tex]
1. General Shape:
- The function \( k(x) = \frac{2}{x} \) is a hyperbola. A hyperbola typically has two asymptotes and is symmetric about these asymptotes.
2. Asymptotic Behavior:
- As \( x \) approaches \( 0 \) from the left (negative side), \( \frac{2}{x} \) becomes very large negative.
- As \( x \) approaches \( 0 \) from the right (positive side), \( \frac{2}{x} \) becomes very large positive.
3. Behavior at Endpoints:
- As \( x \) approaches \(-\infty\), \( \frac{2}{x} \) approaches \( 0 \) from the negative side.
- As \( x \) approaches \( 1 \) from the left, \( \frac{2}{x} \) approaches \( 2 \) because \( \frac{2}{1} = 2 \).
4. Decreasing/Increasing Intervals:
- On the interval \((-\infty, 0)\), the function \( \frac{2}{x} \) is negative and as the value of \( x \) becomes more negative, \( \frac{2}{x} \) approaches \( 0 \), meaning the function is decreasing.
- On the interval \((0, 1)\), the function \( \frac{2}{x} \) is positive and as the value of \( x \) approaches \( 1 \), \( \frac{2}{x} \) approaches \( 2 \), meaning the function is increasing.
From this, we deduce that:
- The general shape of the function \( k(x) = \frac{2}{x} \) on the interval \((-\infty, 1)\) is a hyperbola.
- The function \( k(x) \) is decreasing on the interval \((-\infty, 0)\) and increasing on the interval \((0, 1)\).
Thus, the answer is:
- Shape: Hyperbola
- Direction: Decreasing on [tex]\((-\infty, 0)\)[/tex] and increasing on [tex]\((0, 1)\)[/tex]
[tex]\[ k(x) = \frac{2}{x} \][/tex]
1. General Shape:
- The function \( k(x) = \frac{2}{x} \) is a hyperbola. A hyperbola typically has two asymptotes and is symmetric about these asymptotes.
2. Asymptotic Behavior:
- As \( x \) approaches \( 0 \) from the left (negative side), \( \frac{2}{x} \) becomes very large negative.
- As \( x \) approaches \( 0 \) from the right (positive side), \( \frac{2}{x} \) becomes very large positive.
3. Behavior at Endpoints:
- As \( x \) approaches \(-\infty\), \( \frac{2}{x} \) approaches \( 0 \) from the negative side.
- As \( x \) approaches \( 1 \) from the left, \( \frac{2}{x} \) approaches \( 2 \) because \( \frac{2}{1} = 2 \).
4. Decreasing/Increasing Intervals:
- On the interval \((-\infty, 0)\), the function \( \frac{2}{x} \) is negative and as the value of \( x \) becomes more negative, \( \frac{2}{x} \) approaches \( 0 \), meaning the function is decreasing.
- On the interval \((0, 1)\), the function \( \frac{2}{x} \) is positive and as the value of \( x \) approaches \( 1 \), \( \frac{2}{x} \) approaches \( 2 \), meaning the function is increasing.
From this, we deduce that:
- The general shape of the function \( k(x) = \frac{2}{x} \) on the interval \((-\infty, 1)\) is a hyperbola.
- The function \( k(x) \) is decreasing on the interval \((-\infty, 0)\) and increasing on the interval \((0, 1)\).
Thus, the answer is:
- Shape: Hyperbola
- Direction: Decreasing on [tex]\((-\infty, 0)\)[/tex] and increasing on [tex]\((0, 1)\)[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.