Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To analyze the function \( k(x) \) on the interval \((-\infty, 1)\), we need to focus on the piece of the function defined for \( x < 1 \). This part of the function is given as:
[tex]\[ k(x) = \frac{2}{x} \][/tex]
1. General Shape:
- The function \( k(x) = \frac{2}{x} \) is a hyperbola. A hyperbola typically has two asymptotes and is symmetric about these asymptotes.
2. Asymptotic Behavior:
- As \( x \) approaches \( 0 \) from the left (negative side), \( \frac{2}{x} \) becomes very large negative.
- As \( x \) approaches \( 0 \) from the right (positive side), \( \frac{2}{x} \) becomes very large positive.
3. Behavior at Endpoints:
- As \( x \) approaches \(-\infty\), \( \frac{2}{x} \) approaches \( 0 \) from the negative side.
- As \( x \) approaches \( 1 \) from the left, \( \frac{2}{x} \) approaches \( 2 \) because \( \frac{2}{1} = 2 \).
4. Decreasing/Increasing Intervals:
- On the interval \((-\infty, 0)\), the function \( \frac{2}{x} \) is negative and as the value of \( x \) becomes more negative, \( \frac{2}{x} \) approaches \( 0 \), meaning the function is decreasing.
- On the interval \((0, 1)\), the function \( \frac{2}{x} \) is positive and as the value of \( x \) approaches \( 1 \), \( \frac{2}{x} \) approaches \( 2 \), meaning the function is increasing.
From this, we deduce that:
- The general shape of the function \( k(x) = \frac{2}{x} \) on the interval \((-\infty, 1)\) is a hyperbola.
- The function \( k(x) \) is decreasing on the interval \((-\infty, 0)\) and increasing on the interval \((0, 1)\).
Thus, the answer is:
- Shape: Hyperbola
- Direction: Decreasing on [tex]\((-\infty, 0)\)[/tex] and increasing on [tex]\((0, 1)\)[/tex]
[tex]\[ k(x) = \frac{2}{x} \][/tex]
1. General Shape:
- The function \( k(x) = \frac{2}{x} \) is a hyperbola. A hyperbola typically has two asymptotes and is symmetric about these asymptotes.
2. Asymptotic Behavior:
- As \( x \) approaches \( 0 \) from the left (negative side), \( \frac{2}{x} \) becomes very large negative.
- As \( x \) approaches \( 0 \) from the right (positive side), \( \frac{2}{x} \) becomes very large positive.
3. Behavior at Endpoints:
- As \( x \) approaches \(-\infty\), \( \frac{2}{x} \) approaches \( 0 \) from the negative side.
- As \( x \) approaches \( 1 \) from the left, \( \frac{2}{x} \) approaches \( 2 \) because \( \frac{2}{1} = 2 \).
4. Decreasing/Increasing Intervals:
- On the interval \((-\infty, 0)\), the function \( \frac{2}{x} \) is negative and as the value of \( x \) becomes more negative, \( \frac{2}{x} \) approaches \( 0 \), meaning the function is decreasing.
- On the interval \((0, 1)\), the function \( \frac{2}{x} \) is positive and as the value of \( x \) approaches \( 1 \), \( \frac{2}{x} \) approaches \( 2 \), meaning the function is increasing.
From this, we deduce that:
- The general shape of the function \( k(x) = \frac{2}{x} \) on the interval \((-\infty, 1)\) is a hyperbola.
- The function \( k(x) \) is decreasing on the interval \((-\infty, 0)\) and increasing on the interval \((0, 1)\).
Thus, the answer is:
- Shape: Hyperbola
- Direction: Decreasing on [tex]\((-\infty, 0)\)[/tex] and increasing on [tex]\((0, 1)\)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.