Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

After graduating from college, Carlos receives two different job offers. Both pay a starting salary of [tex]\[tex]$73{,}000[/tex] per year, but one job promises a [tex]\$[/tex]4{,}380[/tex] raise per year, while the other guarantees a [tex]5\%[/tex] raise each year.

Complete the tables below to determine what his salary will be after [tex]t[/tex] years. Round your answers to the nearest dollar.

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$t$[/tex] years & 1 & 5 & 10 & 15 \\
\hline
\begin{tabular}{c}
Salary with [tex]\$4{,}380[/tex] \\
raise per year
\end{tabular} & & & & \\
\hline
\end{tabular}
\][/tex]

[tex]\[
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$t$[/tex] years & 1 & 5 & 10 & 15 \\
\hline
\begin{tabular}{c}
Salary with [tex]5\%[/tex] \\
raise per year
\end{tabular} & & & & \\
\hline
\end{tabular}
\][/tex]


Sagot :

Let's determine Carlos's salary for each job offer after \( t \) years.

### Job Offer 1: Fixed $4380 Raise Per Year
For this job, Carlos receives a fixed annual raise of $4380. The formula to calculate the salary after \( t \) years is:
[tex]\[ \text{Salary} = \text{Starting Salary} + (\text{Fixed Annual Raise} \times t) \][/tex]
Given:
- Starting salary \( = \$73000 \)
- Fixed annual raise \( = \$4380 \)

Let's calculate the salary for \( t = 1 \), \( t = 5 \), \( t = 10 \), and \( t = 15 \) years:

1. After 1 year:
[tex]\[ \text{Salary} = \[tex]$73000 + (\$[/tex]4380 \times 1) = \$77380
\][/tex]

2. After 5 years:
[tex]\[ \text{Salary} = \[tex]$73000 + (\$[/tex]4380 \times 5) = \$94900
\][/tex]

3. After 10 years:
[tex]\[ \text{Salary} = \[tex]$73000 + (\$[/tex]4380 \times 10) = \$116800
\][/tex]

4. After 15 years:
[tex]\[ \text{Salary} = \[tex]$73000 + (\$[/tex]4380 \times 15) = \$138700
\][/tex]

### Job Offer 2: 5% Raise Per Year
For this job, Carlos receives an annual raise of 5% of his current salary. The formula to calculate the salary after \( t \) years is:
[tex]\[ \text{Salary} = \text{Starting Salary} \times (1 + \text{Percent Annual Raise})^t \][/tex]
Given:
- Starting salary \( = \$73000 \)
- Percent annual raise \( = 0.05 \)

Let's calculate the salary for \( t = 1 \), \( t = 5 \), \( t = 10 \), and \( t = 15 \) years:

1. After 1 year:
[tex]\[ \text{Salary} = \[tex]$73000 \times (1 + 0.05)^1 = \$[/tex]76650
\][/tex]

2. After 5 years:
[tex]\[ \text{Salary} = \[tex]$73000 \times (1 + 0.05)^5 = \$[/tex]93169
\][/tex]

3. After 10 years:
[tex]\[ \text{Salary} = \[tex]$73000 \times (1 + 0.05)^{10} = \$[/tex]118909
\][/tex]

4. After 15 years:
[tex]\[ \text{Salary} = \[tex]$73000 \times (1 + 0.05)^{15} = \$[/tex]151762
\][/tex]

### Summary Tables
Here are the completed tables for both job offers:

#### Salary with $4380 Raise Per Year
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$t$[/tex] years & 1 & 5 & 10 & 15 \\
\hline
\begin{tabular}{c} Salary with \\ [tex]$4380$[/tex] raise \\ per year \end{tabular} & [tex]$77380 & $[/tex]94900 & [tex]$116800 & $[/tex]138700 \\
\hline
\end{tabular}

#### Salary with 5% Raise Per Year
\begin{tabular}{|c|c|c|c|c|}
\hline
[tex]$t$[/tex] years & 1 & 5 & 10 & 15 \\
\hline
\begin{tabular}{c} Salary with \\ [tex]$5\%$[/tex] raise \\ per year \end{tabular} & [tex]$76650 & $[/tex]93169 & [tex]$118909 & $[/tex]151762 \\
\hline
\end{tabular}

This should give Carlos a clear understanding of his salary progression under each job offer over 15 years.