Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
### Problem Statement
We need to find the Least Common Multiple (LCM) of several sets of polynomial expressions. Here, we'll address sets \( (d) \) and \( (e) \) in detail.
### d) \(a^2 x + a b x, a b x^2 + b^2 x^2\)
To find the LCM of the polynomials \(a^2 x + a b x\) and \(a b x^2 + b^2 x^2\):
1. Factorize each polynomial:
- \( a^2 x + a b x = a x (a + b) \)
- \( a b x^2 + b^2 x^2 = b x^2 (a + b) \)
2. Identify common and unique factors:
- Common factor: \( (a + b) \)
- Unique factors: \(a x\) and \(b x^2\)
3. Form the LCM:
- LCM should include the highest power of each distinct factor:
- Multiply the highest powers: \(a\), \(b\), \(x^2\), and \((a + b)\)
Therefore, the LCM is:
[tex]\[ a^2 b x^2 + a b^2 x^2 \][/tex]
### e) \(3 x^2 + 6 x, 2 x^3 + 4 x^2\)
To find the LCM of the polynomials \(3 x^2 + 6 x\) and \(2 x^3 + 4 x^2\):
1. Factorize each polynomial:
- \( 3 x^2 + 6 x = 3 x (x + 2) \)
- \( 2 x^3 + 4 x^2 = 2 x^2 (x + 2) \)
2. Identify common and unique factors:
- Common factor: \(x + 2\)
- Unique factors: \(3 x\) and \(2 x^2\)
3. Form the LCM:
- LCM should include the highest power of each distinct factor:
- Multiply the highest powers: \(3\), \(2\), \(x^3\), and \((x + 2)\)
Therefore, the LCM is:
[tex]\[ 6 x^4 + 18 x^3 + 12 x^2 \][/tex]
### Summary
The LCM of the given polynomial sets are:
- For set (d): \(a^2 b x^2 + a b^2 x^2\)
- For set (e): \(6 x^4 + 18 x^3 + 12 x^2\)
These results give us the least common multiples of the polynomials in sets [tex]\(d\)[/tex] and [tex]\(e\)[/tex] as required.
We need to find the Least Common Multiple (LCM) of several sets of polynomial expressions. Here, we'll address sets \( (d) \) and \( (e) \) in detail.
### d) \(a^2 x + a b x, a b x^2 + b^2 x^2\)
To find the LCM of the polynomials \(a^2 x + a b x\) and \(a b x^2 + b^2 x^2\):
1. Factorize each polynomial:
- \( a^2 x + a b x = a x (a + b) \)
- \( a b x^2 + b^2 x^2 = b x^2 (a + b) \)
2. Identify common and unique factors:
- Common factor: \( (a + b) \)
- Unique factors: \(a x\) and \(b x^2\)
3. Form the LCM:
- LCM should include the highest power of each distinct factor:
- Multiply the highest powers: \(a\), \(b\), \(x^2\), and \((a + b)\)
Therefore, the LCM is:
[tex]\[ a^2 b x^2 + a b^2 x^2 \][/tex]
### e) \(3 x^2 + 6 x, 2 x^3 + 4 x^2\)
To find the LCM of the polynomials \(3 x^2 + 6 x\) and \(2 x^3 + 4 x^2\):
1. Factorize each polynomial:
- \( 3 x^2 + 6 x = 3 x (x + 2) \)
- \( 2 x^3 + 4 x^2 = 2 x^2 (x + 2) \)
2. Identify common and unique factors:
- Common factor: \(x + 2\)
- Unique factors: \(3 x\) and \(2 x^2\)
3. Form the LCM:
- LCM should include the highest power of each distinct factor:
- Multiply the highest powers: \(3\), \(2\), \(x^3\), and \((x + 2)\)
Therefore, the LCM is:
[tex]\[ 6 x^4 + 18 x^3 + 12 x^2 \][/tex]
### Summary
The LCM of the given polynomial sets are:
- For set (d): \(a^2 b x^2 + a b^2 x^2\)
- For set (e): \(6 x^4 + 18 x^3 + 12 x^2\)
These results give us the least common multiples of the polynomials in sets [tex]\(d\)[/tex] and [tex]\(e\)[/tex] as required.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.