Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation \( 2 \sin \theta - 1 = 0 \) in the interval \([0, 2\pi)\), follow these steps:
1. Isolate \(\sin \theta\):
[tex]\[ 2 \sin \theta - 1 = 0 \][/tex]
Adding 1 to both sides, we get:
[tex]\[ 2 \sin \theta = 1 \][/tex]
Dividing both sides by 2, we obtain:
[tex]\[ \sin \theta = \frac{1}{2} \][/tex]
2. Find the principal solution:
Recall that the sine function equals \(\frac{1}{2}\) at certain standard angles. In the unit circle, this occurs at:
[tex]\[ \theta = \frac{\pi}{6} \][/tex]
3. Consider the general solutions in the interval \([0, 2\pi)\):
The sine function is positive in the first and second quadrants. Therefore, the second angle where \(\sin \theta = \frac{1}{2}\) within \([0, 2\pi)\) is:
[tex]\[ \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \][/tex]
4. Write the solutions in terms of \(\pi\):
The solutions in the interval \([0, 2\pi)\) are:
[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]
Therefore, the final solutions for \(\theta\) in radians in terms of \(\pi\) are:
[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]
1. Isolate \(\sin \theta\):
[tex]\[ 2 \sin \theta - 1 = 0 \][/tex]
Adding 1 to both sides, we get:
[tex]\[ 2 \sin \theta = 1 \][/tex]
Dividing both sides by 2, we obtain:
[tex]\[ \sin \theta = \frac{1}{2} \][/tex]
2. Find the principal solution:
Recall that the sine function equals \(\frac{1}{2}\) at certain standard angles. In the unit circle, this occurs at:
[tex]\[ \theta = \frac{\pi}{6} \][/tex]
3. Consider the general solutions in the interval \([0, 2\pi)\):
The sine function is positive in the first and second quadrants. Therefore, the second angle where \(\sin \theta = \frac{1}{2}\) within \([0, 2\pi)\) is:
[tex]\[ \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \][/tex]
4. Write the solutions in terms of \(\pi\):
The solutions in the interval \([0, 2\pi)\) are:
[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]
Therefore, the final solutions for \(\theta\) in radians in terms of \(\pi\) are:
[tex]\[ \theta = \frac{\pi}{6}, \frac{5\pi}{6} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.