Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how much energy is generated from freezing \(2.5 \, \text{g}\) of water, we will proceed step-by-step.
1. Identify the relevant constants:
For freezing water, the relevant enthalpy change is the heat of fusion, \(\Delta H_{\text{fusion}} = 6.03 \, \text{kJ/mol}\).
2. Determine the mass of water:
Given mass of water \( m = 2.5 \, \text{g} \).
3. Calculate the moles of water:
We need to convert the mass of water to moles. The molar mass of water, \( M_{\text{H}_2\text{O}} = 18.02 \, \text{g/mol} \).
[tex]\[ \text{moles of water} = \frac{\text{mass of water}}{\text{molar mass of water}} = \frac{2.5 \, \text{g}}{18.02 \, \text{g/mol}} = 0.1387 \, \text{mol} \][/tex]
4. Calculate the energy using \(\Delta H_{\text{fusion}}\):
[tex]\[ \text{energy generated} = (\text{moles of water}) \times \Delta H_{\text{fusion}} \][/tex]
[tex]\[ \text{energy generated} = 0.1387 \, \text{mol} \times 6.03 \, \text{kJ/mol} = 0.8366 \, \text{kJ} \][/tex]
Therefore, the amount of energy generated from freezing \(2.5 \, \text{g}\) of water is \(0.8366 \, \text{kJ}\).
The closest matching option in your list is:
D. \(2.5 \, \text{g} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 6.03 \, \text{kJ/mol} \)
So, the correct choice is:
D. \(2.5 \, \text{g} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times (6.03) \, \text{kJ/mol}
1. Identify the relevant constants:
For freezing water, the relevant enthalpy change is the heat of fusion, \(\Delta H_{\text{fusion}} = 6.03 \, \text{kJ/mol}\).
2. Determine the mass of water:
Given mass of water \( m = 2.5 \, \text{g} \).
3. Calculate the moles of water:
We need to convert the mass of water to moles. The molar mass of water, \( M_{\text{H}_2\text{O}} = 18.02 \, \text{g/mol} \).
[tex]\[ \text{moles of water} = \frac{\text{mass of water}}{\text{molar mass of water}} = \frac{2.5 \, \text{g}}{18.02 \, \text{g/mol}} = 0.1387 \, \text{mol} \][/tex]
4. Calculate the energy using \(\Delta H_{\text{fusion}}\):
[tex]\[ \text{energy generated} = (\text{moles of water}) \times \Delta H_{\text{fusion}} \][/tex]
[tex]\[ \text{energy generated} = 0.1387 \, \text{mol} \times 6.03 \, \text{kJ/mol} = 0.8366 \, \text{kJ} \][/tex]
Therefore, the amount of energy generated from freezing \(2.5 \, \text{g}\) of water is \(0.8366 \, \text{kJ}\).
The closest matching option in your list is:
D. \(2.5 \, \text{g} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times 6.03 \, \text{kJ/mol} \)
So, the correct choice is:
D. \(2.5 \, \text{g} \times \frac{1 \, \text{mol}}{18.02 \, \text{g}} \times (6.03) \, \text{kJ/mol}
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.