Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Let's go through each part of the problem step-by-step.
### Part (a): Finding the Domains
#### Domain of \( f \)
The function \( f \) is defined as \( f(x) = 8x + 3 \). This is a linear function, which is defined for all real numbers. The domain of \( f \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( g \)
The function \( g \) is defined as \( g(x) = 1 - 6x \). This is also a linear function, which is defined for all real numbers. The domain of \( g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f + g \)
The function \((f + g)(x)\) is the sum of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f + g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f - g \)
The function \((f - g)(x)\) is the difference of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f - g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( fg \)
The function \((fg)(x)\) is the product of two linear functions, which results in a quadratic function. A quadratic function is defined for all real numbers. The domain of \( fg \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( ff \)
The function \((ff)(x)\) means the function \( f \) composed with itself, \( f(f(x)) \). Since \( f \) is defined for all real numbers and its output is also a real number, the domain of \( ff \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \(\frac{f}{g}\)
The function \(\left(\frac{f}{g}\right)(x)\) is the quotient of \( f \) and \( g \). This quotient is defined for all \( x \) except where \( g(x) = 0 \).
[tex]\[ g(x) = 1 - 6x = 0 \implies x = \frac{1}{6} \][/tex]
So, the domain of \(\frac{f}{g}\) is:
[tex]\[ (-\infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty) \][/tex]
#### Domain of \(\frac{g}{f}\)
The function \(\left(\frac{g}{f}\right)(x)\) is the quotient of \( g \) and \( f \). This quotient is defined for all \( x \) except where \( f(x) = 0 \).
[tex]\[ f(x) = 8x + 3 = 0 \implies x = -\frac{3}{8} \][/tex]
So, the domain of \(\frac{g}{f}\) is:
[tex]\[ (-\infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty) \][/tex]
### Part (b): Finding the Functions
Now, let's find the expressions for each function.
#### \((f + g)(x)\)
[tex]\[ (f + g)(x) = f(x) + g(x) = (8x + 3) + (1 - 6x) = 2x + 4 \][/tex]
#### \((f - g)(x)\)
[tex]\[ (f - g)(x) = f(x) - g(x) = (8x + 3) - (1 - 6x) = 8x + 3 - 1 + 6x = 14x + 2 \][/tex]
#### \((fg)(x)\)
[tex]\[ (fg)(x) = f(x) \cdot g(x) = (8x + 3)(1 - 6x) = 8x - 48x^2 + 3 - 18x = -48x^2 - 10x + 3 \][/tex]
#### \((ff)(x)\)
[tex]\[ (ff)(x) = f(f(x)) \][/tex]
[tex]\[ f(x) = 8x + 3 \][/tex]
[tex]\[ f(f(x)) = f(8x + 3) = 8(8x + 3) + 3 = 64x + 24 + 3 = 64x + 27 \][/tex]
#### \(\left(\frac{f}{g}\right)(x)\)
[tex]\[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{8x + 3}{1 - 6x} \][/tex]
#### \(\left(\frac{g}{f}\right)(x)\)
[tex]\[ \left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{1 - 6x}{8x + 3} \][/tex]
In summary:
### Part (a): Domains
- Domain of \( f \): \((- \infty, \infty)\)
- Domain of \( g \): \((- \infty, \infty)\)
- Domain of \( f + g \): \((- \infty, \infty)\)
- Domain of \( f - g \): \((- \infty, \infty)\)
- Domain of \( fg \): \((- \infty, \infty)\)
- Domain of \( ff \): \((- \infty, \infty)\)
- Domain of \(\frac{f}{g}\): \((- \infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty)\)
- Domain of \(\frac{g}{f}\): \((- \infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty)\)
### Part (b): Functions
- \((f + g)(x) = 2x + 4\)
- \((f - g)(x) = 14x + 2\)
- \((fg)(x) = -48x^2 - 10x + 3\)
- \((ff)(x) = 64x + 27\)
- \(\left(\frac{f}{g}\right)(x) = \frac{8x + 3}{1 - 6x}\)
- \(\left(\frac{g}{f}\right)(x) = \frac{1 - 6x}{8x + 3}\)
I hope this detailed solution helps you understand how to find the domains and the resulting functions!
### Part (a): Finding the Domains
#### Domain of \( f \)
The function \( f \) is defined as \( f(x) = 8x + 3 \). This is a linear function, which is defined for all real numbers. The domain of \( f \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( g \)
The function \( g \) is defined as \( g(x) = 1 - 6x \). This is also a linear function, which is defined for all real numbers. The domain of \( g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f + g \)
The function \((f + g)(x)\) is the sum of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f + g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( f - g \)
The function \((f - g)(x)\) is the difference of two linear functions, which is also a linear function and thus defined for all real numbers. The domain of \( f - g \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( fg \)
The function \((fg)(x)\) is the product of two linear functions, which results in a quadratic function. A quadratic function is defined for all real numbers. The domain of \( fg \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \( ff \)
The function \((ff)(x)\) means the function \( f \) composed with itself, \( f(f(x)) \). Since \( f \) is defined for all real numbers and its output is also a real number, the domain of \( ff \) is:
[tex]\[ (-\infty, \infty) \][/tex]
#### Domain of \(\frac{f}{g}\)
The function \(\left(\frac{f}{g}\right)(x)\) is the quotient of \( f \) and \( g \). This quotient is defined for all \( x \) except where \( g(x) = 0 \).
[tex]\[ g(x) = 1 - 6x = 0 \implies x = \frac{1}{6} \][/tex]
So, the domain of \(\frac{f}{g}\) is:
[tex]\[ (-\infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty) \][/tex]
#### Domain of \(\frac{g}{f}\)
The function \(\left(\frac{g}{f}\right)(x)\) is the quotient of \( g \) and \( f \). This quotient is defined for all \( x \) except where \( f(x) = 0 \).
[tex]\[ f(x) = 8x + 3 = 0 \implies x = -\frac{3}{8} \][/tex]
So, the domain of \(\frac{g}{f}\) is:
[tex]\[ (-\infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty) \][/tex]
### Part (b): Finding the Functions
Now, let's find the expressions for each function.
#### \((f + g)(x)\)
[tex]\[ (f + g)(x) = f(x) + g(x) = (8x + 3) + (1 - 6x) = 2x + 4 \][/tex]
#### \((f - g)(x)\)
[tex]\[ (f - g)(x) = f(x) - g(x) = (8x + 3) - (1 - 6x) = 8x + 3 - 1 + 6x = 14x + 2 \][/tex]
#### \((fg)(x)\)
[tex]\[ (fg)(x) = f(x) \cdot g(x) = (8x + 3)(1 - 6x) = 8x - 48x^2 + 3 - 18x = -48x^2 - 10x + 3 \][/tex]
#### \((ff)(x)\)
[tex]\[ (ff)(x) = f(f(x)) \][/tex]
[tex]\[ f(x) = 8x + 3 \][/tex]
[tex]\[ f(f(x)) = f(8x + 3) = 8(8x + 3) + 3 = 64x + 24 + 3 = 64x + 27 \][/tex]
#### \(\left(\frac{f}{g}\right)(x)\)
[tex]\[ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} = \frac{8x + 3}{1 - 6x} \][/tex]
#### \(\left(\frac{g}{f}\right)(x)\)
[tex]\[ \left(\frac{g}{f}\right)(x) = \frac{g(x)}{f(x)} = \frac{1 - 6x}{8x + 3} \][/tex]
In summary:
### Part (a): Domains
- Domain of \( f \): \((- \infty, \infty)\)
- Domain of \( g \): \((- \infty, \infty)\)
- Domain of \( f + g \): \((- \infty, \infty)\)
- Domain of \( f - g \): \((- \infty, \infty)\)
- Domain of \( fg \): \((- \infty, \infty)\)
- Domain of \( ff \): \((- \infty, \infty)\)
- Domain of \(\frac{f}{g}\): \((- \infty, \frac{1}{6}) \cup (\frac{1}{6}, \infty)\)
- Domain of \(\frac{g}{f}\): \((- \infty, -\frac{3}{8}) \cup (-\frac{3}{8}, \infty)\)
### Part (b): Functions
- \((f + g)(x) = 2x + 4\)
- \((f - g)(x) = 14x + 2\)
- \((fg)(x) = -48x^2 - 10x + 3\)
- \((ff)(x) = 64x + 27\)
- \(\left(\frac{f}{g}\right)(x) = \frac{8x + 3}{1 - 6x}\)
- \(\left(\frac{g}{f}\right)(x) = \frac{1 - 6x}{8x + 3}\)
I hope this detailed solution helps you understand how to find the domains and the resulting functions!
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.