Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Find the radius of convergence \( R \) of the series.
[tex]\[
\sum_{n=1}^{\infty} \frac{4^n(x+2)^n}{\sqrt{n}}
\][/tex]
[tex]\[
R = \frac{1}{4}
\][/tex]

Find the interval of convergence \( I \) of the series.
[tex]\[
I = \square
\][/tex]

Sagot :

To determine the interval of convergence, we need to analyze the given series
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n (x+2)^n}{\sqrt{n}}.\][/tex]

We already have the radius of convergence \( R = \frac{1}{4} \).

Next, we need to find the interval of convergence.

### Step 1: Ratio Test

To find where the series converges, we use the ratio test. Consider the general term of the series:
[tex]\[ a_n = \frac{4^n (x+2)^n}{\sqrt{n}}. \][/tex]

The ratio test involves finding the limit:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \][/tex]

First, we express \( a_{n+1} \):
[tex]\[ a_{n+1} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}}. \][/tex]

Now, calculate the ratio:
[tex]\[ \frac{a_{n+1}}{a_n} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{4^n (x+2)^n}. \][/tex]

Simplify this expression:
[tex]\[ \frac{4^{n+1}}{4^n} \cdot \frac{(x+2)^{n+1}}{(x+2)^n} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]

Take the limit as \( n \) approaches infinity:
[tex]\[ \lim_{n \to \infty} \left| 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right| = \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]

Observe that \(\frac{\sqrt{n}}{\sqrt{n+1}} \) approaches 1 as \( n \) goes to infinity, so:
[tex]\[ \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 |x+2|. \][/tex]

For convergence, we require:
[tex]\[ 4 |x+2| < 1. \][/tex]

Solve for \( |x+2| \):
[tex]\[ |x+2| < \frac{1}{4}. \][/tex]

So, the interval is:
[tex]\[ -\frac{1}{4} < x+2 < \frac{1}{4}. \][/tex]

Subtract 2 from all sides:
[tex]\[ -2 - \frac{1}{4} < x < -2 + \frac{1}{4}, \][/tex]
[tex]\[ -\frac{9}{4} < x < -\frac{7}{4}. \][/tex]

### Step 2: Check the Endpoints

Checking \( x = -\frac{9}{4} \):
For \( x = -\frac{9}{4} \),
[tex]\[ |x+2| = \left| -\frac{9}{4} + 2 \right| = \left| -\frac{9}{4} + \frac{8}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}. \][/tex]

Thus, substituting \( x = -\frac{9}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( -\frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot -\frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}. \][/tex]

The series \( \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) is the alternating harmonic series with terms that go to zero, so by the alternating series test, it converges.

Checking \( x = -\frac{7}{4} \):
For \( x = -\frac{7}{4} \),
[tex]\[ |x+2| = \left| -\frac{7}{4} + 2 \right| = \left| -\frac{7}{4} + \frac{8}{4} \right| = \left| \frac{1}{4} \right| = \frac{1}{4}. \][/tex]

Thus, substituting \( x = -\frac{7}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( \frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot \frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}. \][/tex]

The series \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is the p-series with \(p=\frac{1}{2}\), which diverges because \( p \leq 1 \).

### Conclusion

The interval of convergence is:
[tex]\[ \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]

Thus:
[tex]\[ I = \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]