At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Find the radius of convergence \( R \) of the series.
[tex]\[
\sum_{n=1}^{\infty} \frac{4^n(x+2)^n}{\sqrt{n}}
\][/tex]
[tex]\[
R = \frac{1}{4}
\][/tex]

Find the interval of convergence \( I \) of the series.
[tex]\[
I = \square
\][/tex]


Sagot :

To determine the interval of convergence, we need to analyze the given series
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n (x+2)^n}{\sqrt{n}}.\][/tex]

We already have the radius of convergence \( R = \frac{1}{4} \).

Next, we need to find the interval of convergence.

### Step 1: Ratio Test

To find where the series converges, we use the ratio test. Consider the general term of the series:
[tex]\[ a_n = \frac{4^n (x+2)^n}{\sqrt{n}}. \][/tex]

The ratio test involves finding the limit:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \][/tex]

First, we express \( a_{n+1} \):
[tex]\[ a_{n+1} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}}. \][/tex]

Now, calculate the ratio:
[tex]\[ \frac{a_{n+1}}{a_n} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{4^n (x+2)^n}. \][/tex]

Simplify this expression:
[tex]\[ \frac{4^{n+1}}{4^n} \cdot \frac{(x+2)^{n+1}}{(x+2)^n} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]

Take the limit as \( n \) approaches infinity:
[tex]\[ \lim_{n \to \infty} \left| 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right| = \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]

Observe that \(\frac{\sqrt{n}}{\sqrt{n+1}} \) approaches 1 as \( n \) goes to infinity, so:
[tex]\[ \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 |x+2|. \][/tex]

For convergence, we require:
[tex]\[ 4 |x+2| < 1. \][/tex]

Solve for \( |x+2| \):
[tex]\[ |x+2| < \frac{1}{4}. \][/tex]

So, the interval is:
[tex]\[ -\frac{1}{4} < x+2 < \frac{1}{4}. \][/tex]

Subtract 2 from all sides:
[tex]\[ -2 - \frac{1}{4} < x < -2 + \frac{1}{4}, \][/tex]
[tex]\[ -\frac{9}{4} < x < -\frac{7}{4}. \][/tex]

### Step 2: Check the Endpoints

Checking \( x = -\frac{9}{4} \):
For \( x = -\frac{9}{4} \),
[tex]\[ |x+2| = \left| -\frac{9}{4} + 2 \right| = \left| -\frac{9}{4} + \frac{8}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}. \][/tex]

Thus, substituting \( x = -\frac{9}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( -\frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot -\frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}. \][/tex]

The series \( \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) is the alternating harmonic series with terms that go to zero, so by the alternating series test, it converges.

Checking \( x = -\frac{7}{4} \):
For \( x = -\frac{7}{4} \),
[tex]\[ |x+2| = \left| -\frac{7}{4} + 2 \right| = \left| -\frac{7}{4} + \frac{8}{4} \right| = \left| \frac{1}{4} \right| = \frac{1}{4}. \][/tex]

Thus, substituting \( x = -\frac{7}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( \frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot \frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}. \][/tex]

The series \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is the p-series with \(p=\frac{1}{2}\), which diverges because \( p \leq 1 \).

### Conclusion

The interval of convergence is:
[tex]\[ \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]

Thus:
[tex]\[ I = \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]