At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the interval of convergence, we need to analyze the given series
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n (x+2)^n}{\sqrt{n}}.\][/tex]
We already have the radius of convergence \( R = \frac{1}{4} \).
Next, we need to find the interval of convergence.
### Step 1: Ratio Test
To find where the series converges, we use the ratio test. Consider the general term of the series:
[tex]\[ a_n = \frac{4^n (x+2)^n}{\sqrt{n}}. \][/tex]
The ratio test involves finding the limit:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \][/tex]
First, we express \( a_{n+1} \):
[tex]\[ a_{n+1} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}}. \][/tex]
Now, calculate the ratio:
[tex]\[ \frac{a_{n+1}}{a_n} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{4^n (x+2)^n}. \][/tex]
Simplify this expression:
[tex]\[ \frac{4^{n+1}}{4^n} \cdot \frac{(x+2)^{n+1}}{(x+2)^n} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Take the limit as \( n \) approaches infinity:
[tex]\[ \lim_{n \to \infty} \left| 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right| = \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Observe that \(\frac{\sqrt{n}}{\sqrt{n+1}} \) approaches 1 as \( n \) goes to infinity, so:
[tex]\[ \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 |x+2|. \][/tex]
For convergence, we require:
[tex]\[ 4 |x+2| < 1. \][/tex]
Solve for \( |x+2| \):
[tex]\[ |x+2| < \frac{1}{4}. \][/tex]
So, the interval is:
[tex]\[ -\frac{1}{4} < x+2 < \frac{1}{4}. \][/tex]
Subtract 2 from all sides:
[tex]\[ -2 - \frac{1}{4} < x < -2 + \frac{1}{4}, \][/tex]
[tex]\[ -\frac{9}{4} < x < -\frac{7}{4}. \][/tex]
### Step 2: Check the Endpoints
Checking \( x = -\frac{9}{4} \):
For \( x = -\frac{9}{4} \),
[tex]\[ |x+2| = \left| -\frac{9}{4} + 2 \right| = \left| -\frac{9}{4} + \frac{8}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{9}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( -\frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot -\frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) is the alternating harmonic series with terms that go to zero, so by the alternating series test, it converges.
Checking \( x = -\frac{7}{4} \):
For \( x = -\frac{7}{4} \),
[tex]\[ |x+2| = \left| -\frac{7}{4} + 2 \right| = \left| -\frac{7}{4} + \frac{8}{4} \right| = \left| \frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{7}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( \frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot \frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is the p-series with \(p=\frac{1}{2}\), which diverges because \( p \leq 1 \).
### Conclusion
The interval of convergence is:
[tex]\[ \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
Thus:
[tex]\[ I = \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n (x+2)^n}{\sqrt{n}}.\][/tex]
We already have the radius of convergence \( R = \frac{1}{4} \).
Next, we need to find the interval of convergence.
### Step 1: Ratio Test
To find where the series converges, we use the ratio test. Consider the general term of the series:
[tex]\[ a_n = \frac{4^n (x+2)^n}{\sqrt{n}}. \][/tex]
The ratio test involves finding the limit:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|. \][/tex]
First, we express \( a_{n+1} \):
[tex]\[ a_{n+1} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}}. \][/tex]
Now, calculate the ratio:
[tex]\[ \frac{a_{n+1}}{a_n} = \frac{4^{n+1} (x+2)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{4^n (x+2)^n}. \][/tex]
Simplify this expression:
[tex]\[ \frac{4^{n+1}}{4^n} \cdot \frac{(x+2)^{n+1}}{(x+2)^n} \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Take the limit as \( n \) approaches infinity:
[tex]\[ \lim_{n \to \infty} \left| 4 \cdot (x+2) \cdot \frac{\sqrt{n}}{\sqrt{n+1}} \right| = \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}}. \][/tex]
Observe that \(\frac{\sqrt{n}}{\sqrt{n+1}} \) approaches 1 as \( n \) goes to infinity, so:
[tex]\[ \lim_{n \to \infty} 4 |x+2| \cdot \frac{\sqrt{n}}{\sqrt{n+1}} = 4 |x+2|. \][/tex]
For convergence, we require:
[tex]\[ 4 |x+2| < 1. \][/tex]
Solve for \( |x+2| \):
[tex]\[ |x+2| < \frac{1}{4}. \][/tex]
So, the interval is:
[tex]\[ -\frac{1}{4} < x+2 < \frac{1}{4}. \][/tex]
Subtract 2 from all sides:
[tex]\[ -2 - \frac{1}{4} < x < -2 + \frac{1}{4}, \][/tex]
[tex]\[ -\frac{9}{4} < x < -\frac{7}{4}. \][/tex]
### Step 2: Check the Endpoints
Checking \( x = -\frac{9}{4} \):
For \( x = -\frac{9}{4} \),
[tex]\[ |x+2| = \left| -\frac{9}{4} + 2 \right| = \left| -\frac{9}{4} + \frac{8}{4} \right| = \left| -\frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{9}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( -\frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot -\frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} \) is the alternating harmonic series with terms that go to zero, so by the alternating series test, it converges.
Checking \( x = -\frac{7}{4} \):
For \( x = -\frac{7}{4} \),
[tex]\[ |x+2| = \left| -\frac{7}{4} + 2 \right| = \left| -\frac{7}{4} + \frac{8}{4} \right| = \left| \frac{1}{4} \right| = \frac{1}{4}. \][/tex]
Thus, substituting \( x = -\frac{7}{4} \) in the series:
[tex]\[ \sum_{n=1}^{\infty} \frac{4^n \left( \frac{1}{4} \right)^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{(4 \cdot \frac{1}{4})^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1^n}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}. \][/tex]
The series \( \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is the p-series with \(p=\frac{1}{2}\), which diverges because \( p \leq 1 \).
### Conclusion
The interval of convergence is:
[tex]\[ \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
Thus:
[tex]\[ I = \left[ -\frac{9}{4}, -\frac{7}{4} \right). \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.