At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the probabilities of the given events when rolling a fair die twice, we will follow a sequence of logical steps:
### Step 1: List all possible outcomes
When you roll a die twice, each roll has 6 possible outcomes. Therefore, the total number of outcomes for rolling the die twice is:
[tex]\[ 6 \times 6 = 36. \][/tex]
The possible sums (2 to 12) and their frequencies are counted as below:
- Sum = 2 : (1,1)
- Sum = 3 : (1,2), (2,1)
- Sum = 4 : (1,3), (2,2), (3,1)
- Sum = 5 : (1,4), (2,3), (3,2), (4,1)
- Sum = 6 : (1,5), (2,4), (3,3), (4,2), (5,1)
- Sum = 7 : (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Sum = 8 : (2,6), (3,5), (4,4), (5,3), (6,2)
- Sum = 9 : (3,6), (4,5), (5,4), (6,3)
- Sum = 10 : (4,6), (5,5), (6,4)
- Sum = 11 : (5,6), (6,5)
- Sum = 12 : (6,6)
### Step 2: Compute [tex]$P(A)$[/tex], where Event [tex]$A$[/tex] is that the sum is greater than 7
Firstly, identify which sums are greater than 7: 8, 9, 10, 11, and 12.
- Number of ways to get each sum:
- Sum = 8 : 5 ways
- Sum = 9 : 4 ways
- Sum = 10 : 3 ways
- Sum = 11 : 2 ways
- Sum = 12 : 1 way
Total favorable outcomes for Event [tex]$A$[/tex] = 5 (8) + 4 (9) + 3 (10) + 2 (11) + 1 (12) = 15.
Probability of Event [tex]$A$[/tex]:
[tex]\[ P(A) = \frac{\text{Number of favorable outcomes for Event } A}{\text{Total number of outcomes}} = \frac{15}{36} \approx 0.42 \][/tex]
Thus:
[tex]\[ P(A) = 0.42 \][/tex]
### Step 3: Compute [tex]$P(B)$[/tex], where Event [tex]$B$[/tex] is that the sum is not divisible by 4 and not divisible by 5
Identify the sums that are not divisible by 4 and not by 5:
- Exclude sums divisible by 4: 4, 8, 12
- Exclude sums divisible by 5: 5, 10
Therefore, sums that are not divisible by 4 or 5: 2, 3, 6, 7, 9, 11
Number of ways to get each sum:
- Sum = 2 : 1 way
- Sum = 3 : 2 ways
- Sum = 6 : 5 ways
- Sum = 7 : 6 ways
- Sum = 9 : 4 ways
- Sum = 11 : 2 ways
Total favorable outcomes for Event [tex]$B$[/tex] = 1 (2) + 2 (3) + 5 (6) + 6 (7) + 4 (9) + 2 (11) = 20.
Probability of Event [tex]$B$[/tex]:
[tex]\[ P(B) = \frac{\text{Number of favorable outcomes for Event } B}{\text{Total number of outcomes}} = \frac{20}{36} \approx 0.56 \][/tex]
Thus:
[tex]\[ P(B) = 0.56 \][/tex]
### Summary of Results:
(a) \( P(A) = 0.42 \)
(b) [tex]\( P(B) = 0.56 \)[/tex]
### Step 1: List all possible outcomes
When you roll a die twice, each roll has 6 possible outcomes. Therefore, the total number of outcomes for rolling the die twice is:
[tex]\[ 6 \times 6 = 36. \][/tex]
The possible sums (2 to 12) and their frequencies are counted as below:
- Sum = 2 : (1,1)
- Sum = 3 : (1,2), (2,1)
- Sum = 4 : (1,3), (2,2), (3,1)
- Sum = 5 : (1,4), (2,3), (3,2), (4,1)
- Sum = 6 : (1,5), (2,4), (3,3), (4,2), (5,1)
- Sum = 7 : (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Sum = 8 : (2,6), (3,5), (4,4), (5,3), (6,2)
- Sum = 9 : (3,6), (4,5), (5,4), (6,3)
- Sum = 10 : (4,6), (5,5), (6,4)
- Sum = 11 : (5,6), (6,5)
- Sum = 12 : (6,6)
### Step 2: Compute [tex]$P(A)$[/tex], where Event [tex]$A$[/tex] is that the sum is greater than 7
Firstly, identify which sums are greater than 7: 8, 9, 10, 11, and 12.
- Number of ways to get each sum:
- Sum = 8 : 5 ways
- Sum = 9 : 4 ways
- Sum = 10 : 3 ways
- Sum = 11 : 2 ways
- Sum = 12 : 1 way
Total favorable outcomes for Event [tex]$A$[/tex] = 5 (8) + 4 (9) + 3 (10) + 2 (11) + 1 (12) = 15.
Probability of Event [tex]$A$[/tex]:
[tex]\[ P(A) = \frac{\text{Number of favorable outcomes for Event } A}{\text{Total number of outcomes}} = \frac{15}{36} \approx 0.42 \][/tex]
Thus:
[tex]\[ P(A) = 0.42 \][/tex]
### Step 3: Compute [tex]$P(B)$[/tex], where Event [tex]$B$[/tex] is that the sum is not divisible by 4 and not divisible by 5
Identify the sums that are not divisible by 4 and not by 5:
- Exclude sums divisible by 4: 4, 8, 12
- Exclude sums divisible by 5: 5, 10
Therefore, sums that are not divisible by 4 or 5: 2, 3, 6, 7, 9, 11
Number of ways to get each sum:
- Sum = 2 : 1 way
- Sum = 3 : 2 ways
- Sum = 6 : 5 ways
- Sum = 7 : 6 ways
- Sum = 9 : 4 ways
- Sum = 11 : 2 ways
Total favorable outcomes for Event [tex]$B$[/tex] = 1 (2) + 2 (3) + 5 (6) + 6 (7) + 4 (9) + 2 (11) = 20.
Probability of Event [tex]$B$[/tex]:
[tex]\[ P(B) = \frac{\text{Number of favorable outcomes for Event } B}{\text{Total number of outcomes}} = \frac{20}{36} \approx 0.56 \][/tex]
Thus:
[tex]\[ P(B) = 0.56 \][/tex]
### Summary of Results:
(a) \( P(A) = 0.42 \)
(b) [tex]\( P(B) = 0.56 \)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.