Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the probabilities of the given events when rolling a fair die twice, we will follow a sequence of logical steps:
### Step 1: List all possible outcomes
When you roll a die twice, each roll has 6 possible outcomes. Therefore, the total number of outcomes for rolling the die twice is:
[tex]\[ 6 \times 6 = 36. \][/tex]
The possible sums (2 to 12) and their frequencies are counted as below:
- Sum = 2 : (1,1)
- Sum = 3 : (1,2), (2,1)
- Sum = 4 : (1,3), (2,2), (3,1)
- Sum = 5 : (1,4), (2,3), (3,2), (4,1)
- Sum = 6 : (1,5), (2,4), (3,3), (4,2), (5,1)
- Sum = 7 : (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Sum = 8 : (2,6), (3,5), (4,4), (5,3), (6,2)
- Sum = 9 : (3,6), (4,5), (5,4), (6,3)
- Sum = 10 : (4,6), (5,5), (6,4)
- Sum = 11 : (5,6), (6,5)
- Sum = 12 : (6,6)
### Step 2: Compute [tex]$P(A)$[/tex], where Event [tex]$A$[/tex] is that the sum is greater than 7
Firstly, identify which sums are greater than 7: 8, 9, 10, 11, and 12.
- Number of ways to get each sum:
- Sum = 8 : 5 ways
- Sum = 9 : 4 ways
- Sum = 10 : 3 ways
- Sum = 11 : 2 ways
- Sum = 12 : 1 way
Total favorable outcomes for Event [tex]$A$[/tex] = 5 (8) + 4 (9) + 3 (10) + 2 (11) + 1 (12) = 15.
Probability of Event [tex]$A$[/tex]:
[tex]\[ P(A) = \frac{\text{Number of favorable outcomes for Event } A}{\text{Total number of outcomes}} = \frac{15}{36} \approx 0.42 \][/tex]
Thus:
[tex]\[ P(A) = 0.42 \][/tex]
### Step 3: Compute [tex]$P(B)$[/tex], where Event [tex]$B$[/tex] is that the sum is not divisible by 4 and not divisible by 5
Identify the sums that are not divisible by 4 and not by 5:
- Exclude sums divisible by 4: 4, 8, 12
- Exclude sums divisible by 5: 5, 10
Therefore, sums that are not divisible by 4 or 5: 2, 3, 6, 7, 9, 11
Number of ways to get each sum:
- Sum = 2 : 1 way
- Sum = 3 : 2 ways
- Sum = 6 : 5 ways
- Sum = 7 : 6 ways
- Sum = 9 : 4 ways
- Sum = 11 : 2 ways
Total favorable outcomes for Event [tex]$B$[/tex] = 1 (2) + 2 (3) + 5 (6) + 6 (7) + 4 (9) + 2 (11) = 20.
Probability of Event [tex]$B$[/tex]:
[tex]\[ P(B) = \frac{\text{Number of favorable outcomes for Event } B}{\text{Total number of outcomes}} = \frac{20}{36} \approx 0.56 \][/tex]
Thus:
[tex]\[ P(B) = 0.56 \][/tex]
### Summary of Results:
(a) \( P(A) = 0.42 \)
(b) [tex]\( P(B) = 0.56 \)[/tex]
### Step 1: List all possible outcomes
When you roll a die twice, each roll has 6 possible outcomes. Therefore, the total number of outcomes for rolling the die twice is:
[tex]\[ 6 \times 6 = 36. \][/tex]
The possible sums (2 to 12) and their frequencies are counted as below:
- Sum = 2 : (1,1)
- Sum = 3 : (1,2), (2,1)
- Sum = 4 : (1,3), (2,2), (3,1)
- Sum = 5 : (1,4), (2,3), (3,2), (4,1)
- Sum = 6 : (1,5), (2,4), (3,3), (4,2), (5,1)
- Sum = 7 : (1,6), (2,5), (3,4), (4,3), (5,2), (6,1)
- Sum = 8 : (2,6), (3,5), (4,4), (5,3), (6,2)
- Sum = 9 : (3,6), (4,5), (5,4), (6,3)
- Sum = 10 : (4,6), (5,5), (6,4)
- Sum = 11 : (5,6), (6,5)
- Sum = 12 : (6,6)
### Step 2: Compute [tex]$P(A)$[/tex], where Event [tex]$A$[/tex] is that the sum is greater than 7
Firstly, identify which sums are greater than 7: 8, 9, 10, 11, and 12.
- Number of ways to get each sum:
- Sum = 8 : 5 ways
- Sum = 9 : 4 ways
- Sum = 10 : 3 ways
- Sum = 11 : 2 ways
- Sum = 12 : 1 way
Total favorable outcomes for Event [tex]$A$[/tex] = 5 (8) + 4 (9) + 3 (10) + 2 (11) + 1 (12) = 15.
Probability of Event [tex]$A$[/tex]:
[tex]\[ P(A) = \frac{\text{Number of favorable outcomes for Event } A}{\text{Total number of outcomes}} = \frac{15}{36} \approx 0.42 \][/tex]
Thus:
[tex]\[ P(A) = 0.42 \][/tex]
### Step 3: Compute [tex]$P(B)$[/tex], where Event [tex]$B$[/tex] is that the sum is not divisible by 4 and not divisible by 5
Identify the sums that are not divisible by 4 and not by 5:
- Exclude sums divisible by 4: 4, 8, 12
- Exclude sums divisible by 5: 5, 10
Therefore, sums that are not divisible by 4 or 5: 2, 3, 6, 7, 9, 11
Number of ways to get each sum:
- Sum = 2 : 1 way
- Sum = 3 : 2 ways
- Sum = 6 : 5 ways
- Sum = 7 : 6 ways
- Sum = 9 : 4 ways
- Sum = 11 : 2 ways
Total favorable outcomes for Event [tex]$B$[/tex] = 1 (2) + 2 (3) + 5 (6) + 6 (7) + 4 (9) + 2 (11) = 20.
Probability of Event [tex]$B$[/tex]:
[tex]\[ P(B) = \frac{\text{Number of favorable outcomes for Event } B}{\text{Total number of outcomes}} = \frac{20}{36} \approx 0.56 \][/tex]
Thus:
[tex]\[ P(B) = 0.56 \][/tex]
### Summary of Results:
(a) \( P(A) = 0.42 \)
(b) [tex]\( P(B) = 0.56 \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.