Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the amount of kinetic energy possessed by Ceres, we will use the formula for kinetic energy (KE):
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- \( m \) is the mass of the object
- \( v \) is the velocity of the object
Given the data:
- The mass of Ceres \( m = 3.0 \times 10^{21} \) kg
- The velocity of Ceres \( v = 17900 \) m/s
Let's plug these values into the formula and perform the calculation step-by-step:
1. Square the velocity (\( v^2 \)):
[tex]\[ v^2 = (17900 \, \text{m/s})^2 = 320410000 \, (\text{m/s})^2 \][/tex]
2. Multiply the mass (\( m \)) by the squared velocity (\( v^2 \)):
[tex]\[ m \times v^2 = (3.0 \times 10^{21} \, \text{kg}) \times (320410000 \, (\text{m/s})^2) \][/tex]
When you do this multiplication, you get:
[tex]\[ 3.0 \times 10^{21} \times 320410000 = 9.6123 \times 10^{29} \, \text{kg} \cdot (\text{m/s})^2 \][/tex]
3. Multiply the result by \( \frac{1}{2} \) to find the kinetic energy:
[tex]\[ KE = \frac{1}{2} \times 9.6123 \times 10^{29} \, \text{kg} \cdot (\text{m/s})^2 = 4.80615 \times 10^{29} \, \text{Joules} \][/tex]
Thus, the amount of kinetic energy possessed by Ceres is:
[tex]\[ 4.80615 \times 10^{29} \, \text{Joules} \][/tex]
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- \( m \) is the mass of the object
- \( v \) is the velocity of the object
Given the data:
- The mass of Ceres \( m = 3.0 \times 10^{21} \) kg
- The velocity of Ceres \( v = 17900 \) m/s
Let's plug these values into the formula and perform the calculation step-by-step:
1. Square the velocity (\( v^2 \)):
[tex]\[ v^2 = (17900 \, \text{m/s})^2 = 320410000 \, (\text{m/s})^2 \][/tex]
2. Multiply the mass (\( m \)) by the squared velocity (\( v^2 \)):
[tex]\[ m \times v^2 = (3.0 \times 10^{21} \, \text{kg}) \times (320410000 \, (\text{m/s})^2) \][/tex]
When you do this multiplication, you get:
[tex]\[ 3.0 \times 10^{21} \times 320410000 = 9.6123 \times 10^{29} \, \text{kg} \cdot (\text{m/s})^2 \][/tex]
3. Multiply the result by \( \frac{1}{2} \) to find the kinetic energy:
[tex]\[ KE = \frac{1}{2} \times 9.6123 \times 10^{29} \, \text{kg} \cdot (\text{m/s})^2 = 4.80615 \times 10^{29} \, \text{Joules} \][/tex]
Thus, the amount of kinetic energy possessed by Ceres is:
[tex]\[ 4.80615 \times 10^{29} \, \text{Joules} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.