Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Given this equation:
[tex]\[ 5x + 12 = 36 - 3x \][/tex]

What is the value of [tex]\( x \)[/tex]?


Sagot :

To find the value of \( x \) in the given equation \( 5x + 12 = 36 - 3x \), we need to follow these steps:

1. Combine Like Terms:
First, we need to get all the \( x \) terms on one side of the equation and the constant terms on the other side. To do this, we can add \( 3x \) to both sides of the equation:
[tex]\[ 5x + 3x + 12 = 36 \][/tex]

This combines the \( x \) terms on the left side of the equation:
[tex]\[ 8x + 12 = 36 \][/tex]

2. Isolate the \( x \)-term:
Next, we need to get rid of the constant term on the left side (which is 12 in this case). We do this by subtracting 12 from both sides of the equation:
[tex]\[ 8x + 12 - 12 = 36 - 12 \][/tex]

Simplifying both sides, we get:
[tex]\[ 8x = 24 \][/tex]

3. Solve for \( x \):
Finally, to solve for \( x \), we need to divide both sides of the equation by 8:
[tex]\[ x = \frac{24}{8} \][/tex]

Simplifying the right side, we get:
[tex]\[ x = 3 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is [tex]\( 3 \)[/tex].