Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! To determine the total mechanical energy of Lee Ben Fardest, we need to calculate both his kinetic energy (KE) and his potential energy (PE). The total mechanical energy (TME) is the sum of these two forms of energy.
### 1. Kinetic Energy (KE)
The formula for kinetic energy is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- \( m \) is the mass,
- \( v \) is the speed of the object.
Given:
- \( m = 59.6 \, \text{kg} \)
- \( v = 23.4 \, \text{m/s} \)
Substitute the given values into the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} \times 59.6 \, \text{kg} \times (23.4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 59.6 \times 547.56 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 32646.336 \][/tex]
[tex]\[ KE = 16317.288 \, \text{J} \][/tex]
### 2. Potential Energy (PE)
The formula for potential energy is:
[tex]\[ PE = m g h \][/tex]
where:
- \( m \) is the mass,
- \( g \) is the acceleration due to gravity (approximated as \( 9.8 \, \text{m/s}^2 \)),
- \( h \) is the height above the ground.
Given:
- \( m = 59.6 \, \text{kg} \)
- \( g = 9.8 \, \text{m/s}^2 \)
- \( h = 44.6 \, \text{m} \)
Substitute the given values into the potential energy formula:
[tex]\[ PE = 59.6 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 44.6 \, \text{m} \][/tex]
[tex]\[ PE = 59.6 \times 437.08 \][/tex]
[tex]\[ PE = 26049.968 \, \text{J} \][/tex]
### 3. Total Mechanical Energy (TME)
The total mechanical energy is the sum of the kinetic energy and the potential energy:
[tex]\[ TME = KE + PE \][/tex]
[tex]\[ TME = 16317.288 \, \text{J} + 26049.968 \, \text{J} \][/tex]
[tex]\[ TME = 42367.256 \, \text{J} \][/tex]
Therefore, the total mechanical energy of Lee Ben Fardest is:
[tex]\[ 42367.256 \, \text{J} \][/tex]
### 1. Kinetic Energy (KE)
The formula for kinetic energy is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
where:
- \( m \) is the mass,
- \( v \) is the speed of the object.
Given:
- \( m = 59.6 \, \text{kg} \)
- \( v = 23.4 \, \text{m/s} \)
Substitute the given values into the kinetic energy formula:
[tex]\[ KE = \frac{1}{2} \times 59.6 \, \text{kg} \times (23.4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 59.6 \times 547.56 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 32646.336 \][/tex]
[tex]\[ KE = 16317.288 \, \text{J} \][/tex]
### 2. Potential Energy (PE)
The formula for potential energy is:
[tex]\[ PE = m g h \][/tex]
where:
- \( m \) is the mass,
- \( g \) is the acceleration due to gravity (approximated as \( 9.8 \, \text{m/s}^2 \)),
- \( h \) is the height above the ground.
Given:
- \( m = 59.6 \, \text{kg} \)
- \( g = 9.8 \, \text{m/s}^2 \)
- \( h = 44.6 \, \text{m} \)
Substitute the given values into the potential energy formula:
[tex]\[ PE = 59.6 \, \text{kg} \times 9.8 \, \text{m/s}^2 \times 44.6 \, \text{m} \][/tex]
[tex]\[ PE = 59.6 \times 437.08 \][/tex]
[tex]\[ PE = 26049.968 \, \text{J} \][/tex]
### 3. Total Mechanical Energy (TME)
The total mechanical energy is the sum of the kinetic energy and the potential energy:
[tex]\[ TME = KE + PE \][/tex]
[tex]\[ TME = 16317.288 \, \text{J} + 26049.968 \, \text{J} \][/tex]
[tex]\[ TME = 42367.256 \, \text{J} \][/tex]
Therefore, the total mechanical energy of Lee Ben Fardest is:
[tex]\[ 42367.256 \, \text{J} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.