Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the area of a circle where the radius is given in a specific form, follow these steps:
1. Identify the formula for the area of a circle: The area of a circle is given by the formula \( A = \pi r^2 \), where \( r \) is the radius of the circle.
2. Substitute the given radius into the formula: In this problem, the radius \( r \) is given as \( 2xy^2 \).
3. Substitute \( 2xy^2 \) for \( r \) in the area formula:
[tex]\[ A = \pi (2xy^2)^2 \][/tex]
4. Simplify the expression inside the parentheses first:
[tex]\[ (2xy^2)^2 = (2xy^2) \times (2xy^2) \][/tex]
5. Use the properties of exponents to expand this multiplication:
[tex]\[ (2xy^2) \times (2xy^2) = 2^2 \times x^2 \times (y^2)^2 \][/tex]
6. Calculate the powers:
[tex]\[ 2^2 = 4 \quad \text{and} \quad (y^2)^2 = y^{2 \times 2} = y^4 \][/tex]
Hence, it becomes:
[tex]\[ (2xy^2)^2 = 4x^2y^4 \][/tex]
7. Substitute this result back into the area formula:
[tex]\[ A = \pi \times 4x^2y^4 \][/tex]
8. Multiply the constants and keep the \( \pi \) factor:
[tex]\[ A = 4\pi x^2 y^4 \][/tex]
Therefore, the area of the circle with radius \( 2xy^2 \) expressed as a monomial is:
[tex]\[ A = 4\pi x^2 y^4 \][/tex]
1. Identify the formula for the area of a circle: The area of a circle is given by the formula \( A = \pi r^2 \), where \( r \) is the radius of the circle.
2. Substitute the given radius into the formula: In this problem, the radius \( r \) is given as \( 2xy^2 \).
3. Substitute \( 2xy^2 \) for \( r \) in the area formula:
[tex]\[ A = \pi (2xy^2)^2 \][/tex]
4. Simplify the expression inside the parentheses first:
[tex]\[ (2xy^2)^2 = (2xy^2) \times (2xy^2) \][/tex]
5. Use the properties of exponents to expand this multiplication:
[tex]\[ (2xy^2) \times (2xy^2) = 2^2 \times x^2 \times (y^2)^2 \][/tex]
6. Calculate the powers:
[tex]\[ 2^2 = 4 \quad \text{and} \quad (y^2)^2 = y^{2 \times 2} = y^4 \][/tex]
Hence, it becomes:
[tex]\[ (2xy^2)^2 = 4x^2y^4 \][/tex]
7. Substitute this result back into the area formula:
[tex]\[ A = \pi \times 4x^2y^4 \][/tex]
8. Multiply the constants and keep the \( \pi \) factor:
[tex]\[ A = 4\pi x^2 y^4 \][/tex]
Therefore, the area of the circle with radius \( 2xy^2 \) expressed as a monomial is:
[tex]\[ A = 4\pi x^2 y^4 \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.