Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the exact values of \(\sin 2\theta\), \(\cos 2\theta\), and \(\tan 2\theta\) for \(\theta\) in the interval \(90^\circ < \theta < 180^\circ\) given that \(\sec \theta = -\frac{3}{2}\), we can proceed with the following steps:
### Step 1: Find \(\cos \theta\)
Since \(\sec \theta = \frac{1}{\cos \theta}\):
[tex]\[ \sec \theta = -\frac{3}{2} \implies \cos \theta = -\frac{2}{3} \][/tex]
### Step 2: Determine \(\sin \theta\)
We use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\):
[tex]\[ \sin^2 \theta + \left(-\frac{2}{3}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 \theta + \frac{4}{9} = 1 \][/tex]
[tex]\[ \sin^2 \theta = 1 - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{9}{9} - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{5}{9} \][/tex]
[tex]\[ \sin \theta = \pm \sqrt{\frac{5}{9}} \][/tex]
Since \(90^\circ < \theta < 180^\circ\) and sine is positive in this interval, we have:
[tex]\[ \sin \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \][/tex]
### Step 3: Find \(\sin 2\theta\)
Using the double angle formula for sine:
[tex]\[ \sin 2\theta = 2 \sin \theta \cos \theta \][/tex]
Substitute \(\sin \theta = \frac{\sqrt{5}}{3}\) and \(\cos \theta = -\frac{2}{3}\):
[tex]\[ \sin 2\theta = 2 \left(\frac{\sqrt{5}}{3}\right) \left(-\frac{2}{3}\right) \][/tex]
[tex]\[ \sin 2\theta = 2 \times \frac{\sqrt{5}}{3} \times -\frac{2}{3} \][/tex]
[tex]\[ \sin 2\theta = \frac{2\sqrt{5} \times -2}{9} \][/tex]
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \sin 2\theta \approx -0.9938079899999065 \][/tex]
### Step 4: Find \(\cos 2\theta\)
Using the double angle formula for cosine:
[tex]\[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \][/tex]
Substitute \(\cos \theta = -\frac{2}{3}\) and \(\sin \theta = \frac{\sqrt{5}}{3}\):
[tex]\[ \cos 2\theta = \left(-\frac{2}{3}\right)^2 - \left(\frac{\sqrt{5}}{3}\right)^2 \][/tex]
[tex]\[ \cos 2\theta = \frac{4}{9} - \frac{5}{9} \][/tex]
[tex]\[ \cos 2\theta = -\frac{1}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \cos 2\theta \approx -0.11111111111111116 \][/tex]
### Step 5: Find \(\tan 2\theta\)
Using the relationship \(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}\):
[tex]\[ \tan 2\theta = \frac{-\frac{4\sqrt{5}}{9}}{-\frac{1}{9}} \][/tex]
[tex]\[ \tan 2\theta = \frac{4\sqrt{5}}{1} \][/tex]
[tex]\[ \tan 2\theta = 4\sqrt{5} \][/tex]
Numerically, this is approximately:
[tex]\[ \tan 2\theta \approx 8.944271909999154 \][/tex]
Thus, the exact values are:
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9}, \quad \cos 2\theta = -\frac{1}{9}, \quad \tan 2\theta = 4\sqrt{5} \][/tex]
The numerical approximations are:
[tex]\[ \sin 2\theta \approx -0.9938079899999065, \quad \cos 2\theta \approx -0.11111111111111116, \quad \tan 2\theta \approx 8.944271909999154 \][/tex]
### Step 1: Find \(\cos \theta\)
Since \(\sec \theta = \frac{1}{\cos \theta}\):
[tex]\[ \sec \theta = -\frac{3}{2} \implies \cos \theta = -\frac{2}{3} \][/tex]
### Step 2: Determine \(\sin \theta\)
We use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\):
[tex]\[ \sin^2 \theta + \left(-\frac{2}{3}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 \theta + \frac{4}{9} = 1 \][/tex]
[tex]\[ \sin^2 \theta = 1 - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{9}{9} - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{5}{9} \][/tex]
[tex]\[ \sin \theta = \pm \sqrt{\frac{5}{9}} \][/tex]
Since \(90^\circ < \theta < 180^\circ\) and sine is positive in this interval, we have:
[tex]\[ \sin \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \][/tex]
### Step 3: Find \(\sin 2\theta\)
Using the double angle formula for sine:
[tex]\[ \sin 2\theta = 2 \sin \theta \cos \theta \][/tex]
Substitute \(\sin \theta = \frac{\sqrt{5}}{3}\) and \(\cos \theta = -\frac{2}{3}\):
[tex]\[ \sin 2\theta = 2 \left(\frac{\sqrt{5}}{3}\right) \left(-\frac{2}{3}\right) \][/tex]
[tex]\[ \sin 2\theta = 2 \times \frac{\sqrt{5}}{3} \times -\frac{2}{3} \][/tex]
[tex]\[ \sin 2\theta = \frac{2\sqrt{5} \times -2}{9} \][/tex]
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \sin 2\theta \approx -0.9938079899999065 \][/tex]
### Step 4: Find \(\cos 2\theta\)
Using the double angle formula for cosine:
[tex]\[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \][/tex]
Substitute \(\cos \theta = -\frac{2}{3}\) and \(\sin \theta = \frac{\sqrt{5}}{3}\):
[tex]\[ \cos 2\theta = \left(-\frac{2}{3}\right)^2 - \left(\frac{\sqrt{5}}{3}\right)^2 \][/tex]
[tex]\[ \cos 2\theta = \frac{4}{9} - \frac{5}{9} \][/tex]
[tex]\[ \cos 2\theta = -\frac{1}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \cos 2\theta \approx -0.11111111111111116 \][/tex]
### Step 5: Find \(\tan 2\theta\)
Using the relationship \(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}\):
[tex]\[ \tan 2\theta = \frac{-\frac{4\sqrt{5}}{9}}{-\frac{1}{9}} \][/tex]
[tex]\[ \tan 2\theta = \frac{4\sqrt{5}}{1} \][/tex]
[tex]\[ \tan 2\theta = 4\sqrt{5} \][/tex]
Numerically, this is approximately:
[tex]\[ \tan 2\theta \approx 8.944271909999154 \][/tex]
Thus, the exact values are:
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9}, \quad \cos 2\theta = -\frac{1}{9}, \quad \tan 2\theta = 4\sqrt{5} \][/tex]
The numerical approximations are:
[tex]\[ \sin 2\theta \approx -0.9938079899999065, \quad \cos 2\theta \approx -0.11111111111111116, \quad \tan 2\theta \approx 8.944271909999154 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.