Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the exact values of \(\sin 2\theta\), \(\cos 2\theta\), and \(\tan 2\theta\) for \(\theta\) in the interval \(90^\circ < \theta < 180^\circ\) given that \(\sec \theta = -\frac{3}{2}\), we can proceed with the following steps:
### Step 1: Find \(\cos \theta\)
Since \(\sec \theta = \frac{1}{\cos \theta}\):
[tex]\[ \sec \theta = -\frac{3}{2} \implies \cos \theta = -\frac{2}{3} \][/tex]
### Step 2: Determine \(\sin \theta\)
We use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\):
[tex]\[ \sin^2 \theta + \left(-\frac{2}{3}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 \theta + \frac{4}{9} = 1 \][/tex]
[tex]\[ \sin^2 \theta = 1 - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{9}{9} - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{5}{9} \][/tex]
[tex]\[ \sin \theta = \pm \sqrt{\frac{5}{9}} \][/tex]
Since \(90^\circ < \theta < 180^\circ\) and sine is positive in this interval, we have:
[tex]\[ \sin \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \][/tex]
### Step 3: Find \(\sin 2\theta\)
Using the double angle formula for sine:
[tex]\[ \sin 2\theta = 2 \sin \theta \cos \theta \][/tex]
Substitute \(\sin \theta = \frac{\sqrt{5}}{3}\) and \(\cos \theta = -\frac{2}{3}\):
[tex]\[ \sin 2\theta = 2 \left(\frac{\sqrt{5}}{3}\right) \left(-\frac{2}{3}\right) \][/tex]
[tex]\[ \sin 2\theta = 2 \times \frac{\sqrt{5}}{3} \times -\frac{2}{3} \][/tex]
[tex]\[ \sin 2\theta = \frac{2\sqrt{5} \times -2}{9} \][/tex]
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \sin 2\theta \approx -0.9938079899999065 \][/tex]
### Step 4: Find \(\cos 2\theta\)
Using the double angle formula for cosine:
[tex]\[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \][/tex]
Substitute \(\cos \theta = -\frac{2}{3}\) and \(\sin \theta = \frac{\sqrt{5}}{3}\):
[tex]\[ \cos 2\theta = \left(-\frac{2}{3}\right)^2 - \left(\frac{\sqrt{5}}{3}\right)^2 \][/tex]
[tex]\[ \cos 2\theta = \frac{4}{9} - \frac{5}{9} \][/tex]
[tex]\[ \cos 2\theta = -\frac{1}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \cos 2\theta \approx -0.11111111111111116 \][/tex]
### Step 5: Find \(\tan 2\theta\)
Using the relationship \(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}\):
[tex]\[ \tan 2\theta = \frac{-\frac{4\sqrt{5}}{9}}{-\frac{1}{9}} \][/tex]
[tex]\[ \tan 2\theta = \frac{4\sqrt{5}}{1} \][/tex]
[tex]\[ \tan 2\theta = 4\sqrt{5} \][/tex]
Numerically, this is approximately:
[tex]\[ \tan 2\theta \approx 8.944271909999154 \][/tex]
Thus, the exact values are:
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9}, \quad \cos 2\theta = -\frac{1}{9}, \quad \tan 2\theta = 4\sqrt{5} \][/tex]
The numerical approximations are:
[tex]\[ \sin 2\theta \approx -0.9938079899999065, \quad \cos 2\theta \approx -0.11111111111111116, \quad \tan 2\theta \approx 8.944271909999154 \][/tex]
### Step 1: Find \(\cos \theta\)
Since \(\sec \theta = \frac{1}{\cos \theta}\):
[tex]\[ \sec \theta = -\frac{3}{2} \implies \cos \theta = -\frac{2}{3} \][/tex]
### Step 2: Determine \(\sin \theta\)
We use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\):
[tex]\[ \sin^2 \theta + \left(-\frac{2}{3}\right)^2 = 1 \][/tex]
[tex]\[ \sin^2 \theta + \frac{4}{9} = 1 \][/tex]
[tex]\[ \sin^2 \theta = 1 - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{9}{9} - \frac{4}{9} \][/tex]
[tex]\[ \sin^2 \theta = \frac{5}{9} \][/tex]
[tex]\[ \sin \theta = \pm \sqrt{\frac{5}{9}} \][/tex]
Since \(90^\circ < \theta < 180^\circ\) and sine is positive in this interval, we have:
[tex]\[ \sin \theta = \sqrt{\frac{5}{9}} = \frac{\sqrt{5}}{3} \][/tex]
### Step 3: Find \(\sin 2\theta\)
Using the double angle formula for sine:
[tex]\[ \sin 2\theta = 2 \sin \theta \cos \theta \][/tex]
Substitute \(\sin \theta = \frac{\sqrt{5}}{3}\) and \(\cos \theta = -\frac{2}{3}\):
[tex]\[ \sin 2\theta = 2 \left(\frac{\sqrt{5}}{3}\right) \left(-\frac{2}{3}\right) \][/tex]
[tex]\[ \sin 2\theta = 2 \times \frac{\sqrt{5}}{3} \times -\frac{2}{3} \][/tex]
[tex]\[ \sin 2\theta = \frac{2\sqrt{5} \times -2}{9} \][/tex]
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \sin 2\theta \approx -0.9938079899999065 \][/tex]
### Step 4: Find \(\cos 2\theta\)
Using the double angle formula for cosine:
[tex]\[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \][/tex]
Substitute \(\cos \theta = -\frac{2}{3}\) and \(\sin \theta = \frac{\sqrt{5}}{3}\):
[tex]\[ \cos 2\theta = \left(-\frac{2}{3}\right)^2 - \left(\frac{\sqrt{5}}{3}\right)^2 \][/tex]
[tex]\[ \cos 2\theta = \frac{4}{9} - \frac{5}{9} \][/tex]
[tex]\[ \cos 2\theta = -\frac{1}{9} \][/tex]
Numerically, this is approximately:
[tex]\[ \cos 2\theta \approx -0.11111111111111116 \][/tex]
### Step 5: Find \(\tan 2\theta\)
Using the relationship \(\tan 2\theta = \frac{\sin 2\theta}{\cos 2\theta}\):
[tex]\[ \tan 2\theta = \frac{-\frac{4\sqrt{5}}{9}}{-\frac{1}{9}} \][/tex]
[tex]\[ \tan 2\theta = \frac{4\sqrt{5}}{1} \][/tex]
[tex]\[ \tan 2\theta = 4\sqrt{5} \][/tex]
Numerically, this is approximately:
[tex]\[ \tan 2\theta \approx 8.944271909999154 \][/tex]
Thus, the exact values are:
[tex]\[ \sin 2\theta = -\frac{4\sqrt{5}}{9}, \quad \cos 2\theta = -\frac{1}{9}, \quad \tan 2\theta = 4\sqrt{5} \][/tex]
The numerical approximations are:
[tex]\[ \sin 2\theta \approx -0.9938079899999065, \quad \cos 2\theta \approx -0.11111111111111116, \quad \tan 2\theta \approx 8.944271909999154 \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.