Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which table represents an exponential function, we need to identify whether one of the sets of data shows a consistent multiplicative relationship between successive \( f(x) \) values.
Let's analyze each table step-by-step.
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 1 \\ \hline 1 & 3 \\ \hline 2 & 5 \\ \hline 3 & 8 \\ \hline 4 & 11 \\ \hline \end{array} \][/tex]
We check the ratios between successive \( f(x) \) values:
[tex]\[ \frac{3}{1} = 3, \quad \frac{5}{3} \approx 1.67, \quad \frac{8}{5} = 1.6, \quad \frac{11}{8} \approx 1.375 \][/tex]
The ratios are not consistent; hence, Table 1 does not represent an exponential function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 1 \\ \hline 1 & 4 \\ \hline 2 & 16 \\ \hline 3 & 64 \\ \hline 4 & 256 \\ \hline \end{array} \][/tex]
We check the ratios between successive \( f(x) \) values:
[tex]\[ \frac{4}{1} = 4, \quad \frac{16}{4} = 4, \quad \frac{64}{16} = 4, \quad \frac{256}{64} = 4 \][/tex]
The ratios are consistently 4, which indicates a multiplicative relationship. Thus, Table 2 represents an exponential function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 10 \\ \hline 4 & 12 \\ \hline \end{array} \][/tex]
We check the ratios between successive \( f(x) \) values:
[tex]\[ \frac{4}{2} = 2, \quad \frac{6}{4} = 1.5, \quad \frac{10}{6} \approx 1.67, \quad \frac{12}{10} = 1.2 \][/tex]
The ratios are not consistent; hence, Table 3 does not represent an exponential function.
### Conclusion
Out of the three tables, Table 2 is the only one where the \( f(x) \) values follow a consistent multiplicative relationship:
[tex]\[ 1, 4, 16, 64, 256 \][/tex]
with a common ratio of 4.
Therefore, Table 2 represents an exponential function.
Let's analyze each table step-by-step.
### Table 1
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 1 \\ \hline 1 & 3 \\ \hline 2 & 5 \\ \hline 3 & 8 \\ \hline 4 & 11 \\ \hline \end{array} \][/tex]
We check the ratios between successive \( f(x) \) values:
[tex]\[ \frac{3}{1} = 3, \quad \frac{5}{3} \approx 1.67, \quad \frac{8}{5} = 1.6, \quad \frac{11}{8} \approx 1.375 \][/tex]
The ratios are not consistent; hence, Table 1 does not represent an exponential function.
### Table 2
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 1 \\ \hline 1 & 4 \\ \hline 2 & 16 \\ \hline 3 & 64 \\ \hline 4 & 256 \\ \hline \end{array} \][/tex]
We check the ratios between successive \( f(x) \) values:
[tex]\[ \frac{4}{1} = 4, \quad \frac{16}{4} = 4, \quad \frac{64}{16} = 4, \quad \frac{256}{64} = 4 \][/tex]
The ratios are consistently 4, which indicates a multiplicative relationship. Thus, Table 2 represents an exponential function.
### Table 3
[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 6 \\ \hline 3 & 10 \\ \hline 4 & 12 \\ \hline \end{array} \][/tex]
We check the ratios between successive \( f(x) \) values:
[tex]\[ \frac{4}{2} = 2, \quad \frac{6}{4} = 1.5, \quad \frac{10}{6} \approx 1.67, \quad \frac{12}{10} = 1.2 \][/tex]
The ratios are not consistent; hence, Table 3 does not represent an exponential function.
### Conclusion
Out of the three tables, Table 2 is the only one where the \( f(x) \) values follow a consistent multiplicative relationship:
[tex]\[ 1, 4, 16, 64, 256 \][/tex]
with a common ratio of 4.
Therefore, Table 2 represents an exponential function.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.