Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the given expressions step-by-step.
### (a) \(\sin \left(\sin ^{-1} \frac{7}{9}\right)\)
The expression \(\sin(\sin^{-1}(x))\) is essentially the sine function composed with its inverse. The inverse sine function, \(\sin^{-1}(x)\), returns an angle \(\theta\) such that \(\sin(\theta) = x\) and \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\).
Given the expression:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right)\right) \][/tex]
we are essentially looking for the sine of the angle whose sine is \(\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right) \right) = \frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{\frac{7}{9}} \][/tex]
### (b) \(\cos \left[\cos ^{-1}\left(-\frac{7}{9}\right)\right]\)
Similarly, the expression \(\cos(\cos^{-1}(x))\) is the cosine function composed with its inverse. The inverse cosine function, \(\cos^{-1}(x)\), returns an angle \(\theta\) such that \(\cos(\theta) = x\) and \(0 \leq \theta \leq \pi\).
Given the expression:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) \][/tex]
we are looking for the cosine of the angle whose cosine is \(-\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) = -\frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{-\frac{7}{9}} \][/tex]
### (c) \(\tan \left[\tan ^{-1}(-10)\right]\)
The expression \(\tan(\tan^{-1}(x))\) is the tangent function composed with its inverse. The inverse tangent function, \(\tan^{-1}(x)\), returns an angle \(\theta\) such that \(\tan(\theta) = x\) and \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\).
Given the expression:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) \][/tex]
we are looking for the tangent of the angle whose tangent is \(-10\). By the definition of inverse functions:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) = -10 \][/tex]
Thus, the value is:
[tex]\[ \boxed{-10} \][/tex]
### Summary
The exact values of the given expressions are:
(a) \(\boxed{\frac{7}{9}}\)
(b) \(\boxed{-\frac{7}{9}}\)
(c) [tex]\(\boxed{-10}\)[/tex]
### (a) \(\sin \left(\sin ^{-1} \frac{7}{9}\right)\)
The expression \(\sin(\sin^{-1}(x))\) is essentially the sine function composed with its inverse. The inverse sine function, \(\sin^{-1}(x)\), returns an angle \(\theta\) such that \(\sin(\theta) = x\) and \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\).
Given the expression:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right)\right) \][/tex]
we are essentially looking for the sine of the angle whose sine is \(\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right) \right) = \frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{\frac{7}{9}} \][/tex]
### (b) \(\cos \left[\cos ^{-1}\left(-\frac{7}{9}\right)\right]\)
Similarly, the expression \(\cos(\cos^{-1}(x))\) is the cosine function composed with its inverse. The inverse cosine function, \(\cos^{-1}(x)\), returns an angle \(\theta\) such that \(\cos(\theta) = x\) and \(0 \leq \theta \leq \pi\).
Given the expression:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) \][/tex]
we are looking for the cosine of the angle whose cosine is \(-\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) = -\frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{-\frac{7}{9}} \][/tex]
### (c) \(\tan \left[\tan ^{-1}(-10)\right]\)
The expression \(\tan(\tan^{-1}(x))\) is the tangent function composed with its inverse. The inverse tangent function, \(\tan^{-1}(x)\), returns an angle \(\theta\) such that \(\tan(\theta) = x\) and \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\).
Given the expression:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) \][/tex]
we are looking for the tangent of the angle whose tangent is \(-10\). By the definition of inverse functions:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) = -10 \][/tex]
Thus, the value is:
[tex]\[ \boxed{-10} \][/tex]
### Summary
The exact values of the given expressions are:
(a) \(\boxed{\frac{7}{9}}\)
(b) \(\boxed{-\frac{7}{9}}\)
(c) [tex]\(\boxed{-10}\)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.