Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's tackle each part of the problem step-by-step:
### Part (a)
To find the value of \(\arcsin\left(\sin\left(\frac{13\pi}{12}\right)\right)\), we need to consider the properties of the sine and arcsine functions.
The sine function, \(\sin(\theta)\), is periodic with a period of \(2\pi\). The arcsine function, \(\arcsin(x)\), is the inverse of the sine function restricted to the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\).
Given \(\theta = \frac{13\pi}{12}\), we observe that this angle is outside the principal range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). To bring it within the principal range, we use the property that \(\sin(\theta) = \sin(\pi - \theta)\).
For \(\theta = \frac{13\pi}{12}\):
[tex]\[ \theta = \frac{13\pi}{12} = \pi + \left(\frac{\pi}{12} - \pi\right) \][/tex]
Thus, we get:
[tex]\[ \sin\left(\frac{13\pi}{12}\right) = \sin\left(\frac{13\pi}{12} - \pi\right) = \sin\left(-\frac{\pi}{12}\right) \][/tex]
Since \(\sin(-x) = -\sin(x)\), we have:
[tex]\[ \sin\left(-\frac{\pi}{12}\right) = -\sin\left(\frac{\pi}{12}\right) \][/tex]
Now, applying the arcsin function:
[tex]\[ \arcsin\left(\sin\left(\frac{13\pi}{12}\right)\right) = \arcsin\left(-\sin\left(\frac{\pi}{12}\right)\right) = -\frac{\pi}{12} \][/tex]
Converting \(-\frac{\pi}{12}\) to a numerical value, we get:
[tex]\[ \boxed{-0.26179938779914946} \][/tex]
### Part (b)
To find \(\arccos\left(\cos\left(\frac{8\pi}{5}\right)\right)\), again consider the properties of the cosine and arccosine functions.
The cosine function, \(\cos(\theta)\), is periodic with a period of \(2\pi\). The arccosine function, \(\arccos(x)\), is the inverse of the cosine function restricted to the interval \([0, \pi]\).
Given \(\theta = \frac{8\pi}{5}\), this angle is outside the principal range of \([0, \pi]\). We use the property that \(\cos(\theta) = \cos(2\pi - \theta)\).
For \(\theta = \frac{8\pi}{5}\):
[tex]\[ \theta = \frac{8\pi}{5} = 2\pi - \left(2\pi - \frac{8\pi}{5}\right) = 2\pi - \frac{8\pi}{5} \][/tex]
Thus:
[tex]\[ \cos\left(\frac{8\pi}{5}\right) = \cos\left(2\pi - \frac{8\pi}{5}\right) = \cos\left(\frac{2\pi}{5}\right) \][/tex]
So the value is:
[tex]\[ \arccos\left(\cos\left(\frac{8\pi}{5}\right)\right) = \arccos\left(\cos\left(\frac{2\pi}{5}\right)\right) = \frac{2\pi}{5} \][/tex]
Converting \(\frac{2\pi}{5}\) to a numerical value, we get:
[tex]\[ \boxed{1.2566370614359175} \][/tex]
### Part (c)
To find \(\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right)\), we consider the properties of the tangent and arctangent functions.
The tangent function, \(\tan(\theta)\), is periodic with a period of \(\pi\). The arctangent function, \(\arctan(x)\), is the inverse of the tangent function restricted to the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).
For \(\theta = \frac{5\pi}{4}\), we bring it within the principal range. Observe:
[tex]\[ \theta = \frac{5\pi}{4} = \pi + \left(\frac{\pi}{4}\right) = \pi + \frac{\pi}{4} \][/tex]
Thus,
[tex]\[ \tan\left(\frac{5\pi}{4}\right) = \tan\left(\frac{5\pi}{4} - \pi\right) = \tan\left(\frac{\pi}{4}\right) \][/tex]
So,
[tex]\[ \arctan\left(\tan\left(\frac{5\pi}{4}\right)\right) = \arctan\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4} \][/tex]
Converting \(\frac{\pi}{4}\) to a numerical value, we get:
[tex]\[ \boxed{0.7853981633974482} \][/tex]
Thus, the values are:
[tex]\[ \boxed{-0.26179938779914946}, \boxed{1.2566370614359175}, \boxed{0.7853981633974482} \][/tex]
### Part (a)
To find the value of \(\arcsin\left(\sin\left(\frac{13\pi}{12}\right)\right)\), we need to consider the properties of the sine and arcsine functions.
The sine function, \(\sin(\theta)\), is periodic with a period of \(2\pi\). The arcsine function, \(\arcsin(x)\), is the inverse of the sine function restricted to the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\).
Given \(\theta = \frac{13\pi}{12}\), we observe that this angle is outside the principal range of \([- \frac{\pi}{2}, \frac{\pi}{2}]\). To bring it within the principal range, we use the property that \(\sin(\theta) = \sin(\pi - \theta)\).
For \(\theta = \frac{13\pi}{12}\):
[tex]\[ \theta = \frac{13\pi}{12} = \pi + \left(\frac{\pi}{12} - \pi\right) \][/tex]
Thus, we get:
[tex]\[ \sin\left(\frac{13\pi}{12}\right) = \sin\left(\frac{13\pi}{12} - \pi\right) = \sin\left(-\frac{\pi}{12}\right) \][/tex]
Since \(\sin(-x) = -\sin(x)\), we have:
[tex]\[ \sin\left(-\frac{\pi}{12}\right) = -\sin\left(\frac{\pi}{12}\right) \][/tex]
Now, applying the arcsin function:
[tex]\[ \arcsin\left(\sin\left(\frac{13\pi}{12}\right)\right) = \arcsin\left(-\sin\left(\frac{\pi}{12}\right)\right) = -\frac{\pi}{12} \][/tex]
Converting \(-\frac{\pi}{12}\) to a numerical value, we get:
[tex]\[ \boxed{-0.26179938779914946} \][/tex]
### Part (b)
To find \(\arccos\left(\cos\left(\frac{8\pi}{5}\right)\right)\), again consider the properties of the cosine and arccosine functions.
The cosine function, \(\cos(\theta)\), is periodic with a period of \(2\pi\). The arccosine function, \(\arccos(x)\), is the inverse of the cosine function restricted to the interval \([0, \pi]\).
Given \(\theta = \frac{8\pi}{5}\), this angle is outside the principal range of \([0, \pi]\). We use the property that \(\cos(\theta) = \cos(2\pi - \theta)\).
For \(\theta = \frac{8\pi}{5}\):
[tex]\[ \theta = \frac{8\pi}{5} = 2\pi - \left(2\pi - \frac{8\pi}{5}\right) = 2\pi - \frac{8\pi}{5} \][/tex]
Thus:
[tex]\[ \cos\left(\frac{8\pi}{5}\right) = \cos\left(2\pi - \frac{8\pi}{5}\right) = \cos\left(\frac{2\pi}{5}\right) \][/tex]
So the value is:
[tex]\[ \arccos\left(\cos\left(\frac{8\pi}{5}\right)\right) = \arccos\left(\cos\left(\frac{2\pi}{5}\right)\right) = \frac{2\pi}{5} \][/tex]
Converting \(\frac{2\pi}{5}\) to a numerical value, we get:
[tex]\[ \boxed{1.2566370614359175} \][/tex]
### Part (c)
To find \(\arctan\left(\tan\left(\frac{5\pi}{4}\right)\right)\), we consider the properties of the tangent and arctangent functions.
The tangent function, \(\tan(\theta)\), is periodic with a period of \(\pi\). The arctangent function, \(\arctan(x)\), is the inverse of the tangent function restricted to the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\).
For \(\theta = \frac{5\pi}{4}\), we bring it within the principal range. Observe:
[tex]\[ \theta = \frac{5\pi}{4} = \pi + \left(\frac{\pi}{4}\right) = \pi + \frac{\pi}{4} \][/tex]
Thus,
[tex]\[ \tan\left(\frac{5\pi}{4}\right) = \tan\left(\frac{5\pi}{4} - \pi\right) = \tan\left(\frac{\pi}{4}\right) \][/tex]
So,
[tex]\[ \arctan\left(\tan\left(\frac{5\pi}{4}\right)\right) = \arctan\left(\tan\left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4} \][/tex]
Converting \(\frac{\pi}{4}\) to a numerical value, we get:
[tex]\[ \boxed{0.7853981633974482} \][/tex]
Thus, the values are:
[tex]\[ \boxed{-0.26179938779914946}, \boxed{1.2566370614359175}, \boxed{0.7853981633974482} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.