Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve the expression \( 2 \sin \left(2 \sin^{-1} x\right) \), we can utilize trigonometric identities and properties of inverse trigonometric functions. Here’s the step-by-step solution:
1. Understanding the Inner Function: Let’s first consider the inner function \( \sin^{-1}(x) \). Suppose \( \theta = \sin^{-1}(x) \), which implies \( \sin(\theta) = x \) and \( \theta \) is an angle.
2. Double Angle Identity: We now need to evaluate \( \sin(2\theta) \) where \( \theta = \sin^{-1}(x) \). Using the double angle identity for sine, we have:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
3. Substitution for \( \sin(\theta) \): From our initial substitution, we know \( \sin(\theta) = x \).
4. Finding \( \cos(\theta) \): To find \( \cos(\theta) \), we use the Pythagorean identity. Since \( \sin(\theta) = x \), we have:
[tex]\[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2} \][/tex]
5. Putting it All Together: Using the information above in the double angle identity, we get:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \sqrt{1 - x^2} \][/tex]
6. Scaling by 2: Finally, the original expression was \( 2 \sin (2 \sin^{-1} x) \):
[tex]\[ 2 \sin(2 \theta) = 2(2 x \sqrt{1 - x^2}) = 4 x \sqrt{1 - x^2} \][/tex]
Therefore, the expression \( 2 \sin \left(2 \sin^{-1} x \right) \) can be written as the algebraic expression:
[tex]\[ 4 x \sqrt{1 - x^2} \][/tex]
1. Understanding the Inner Function: Let’s first consider the inner function \( \sin^{-1}(x) \). Suppose \( \theta = \sin^{-1}(x) \), which implies \( \sin(\theta) = x \) and \( \theta \) is an angle.
2. Double Angle Identity: We now need to evaluate \( \sin(2\theta) \) where \( \theta = \sin^{-1}(x) \). Using the double angle identity for sine, we have:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
3. Substitution for \( \sin(\theta) \): From our initial substitution, we know \( \sin(\theta) = x \).
4. Finding \( \cos(\theta) \): To find \( \cos(\theta) \), we use the Pythagorean identity. Since \( \sin(\theta) = x \), we have:
[tex]\[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2} \][/tex]
5. Putting it All Together: Using the information above in the double angle identity, we get:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \sqrt{1 - x^2} \][/tex]
6. Scaling by 2: Finally, the original expression was \( 2 \sin (2 \sin^{-1} x) \):
[tex]\[ 2 \sin(2 \theta) = 2(2 x \sqrt{1 - x^2}) = 4 x \sqrt{1 - x^2} \][/tex]
Therefore, the expression \( 2 \sin \left(2 \sin^{-1} x \right) \) can be written as the algebraic expression:
[tex]\[ 4 x \sqrt{1 - x^2} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.