Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the expression \( 2 \sin \left(2 \sin^{-1} x\right) \), we can utilize trigonometric identities and properties of inverse trigonometric functions. Here’s the step-by-step solution:
1. Understanding the Inner Function: Let’s first consider the inner function \( \sin^{-1}(x) \). Suppose \( \theta = \sin^{-1}(x) \), which implies \( \sin(\theta) = x \) and \( \theta \) is an angle.
2. Double Angle Identity: We now need to evaluate \( \sin(2\theta) \) where \( \theta = \sin^{-1}(x) \). Using the double angle identity for sine, we have:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
3. Substitution for \( \sin(\theta) \): From our initial substitution, we know \( \sin(\theta) = x \).
4. Finding \( \cos(\theta) \): To find \( \cos(\theta) \), we use the Pythagorean identity. Since \( \sin(\theta) = x \), we have:
[tex]\[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2} \][/tex]
5. Putting it All Together: Using the information above in the double angle identity, we get:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \sqrt{1 - x^2} \][/tex]
6. Scaling by 2: Finally, the original expression was \( 2 \sin (2 \sin^{-1} x) \):
[tex]\[ 2 \sin(2 \theta) = 2(2 x \sqrt{1 - x^2}) = 4 x \sqrt{1 - x^2} \][/tex]
Therefore, the expression \( 2 \sin \left(2 \sin^{-1} x \right) \) can be written as the algebraic expression:
[tex]\[ 4 x \sqrt{1 - x^2} \][/tex]
1. Understanding the Inner Function: Let’s first consider the inner function \( \sin^{-1}(x) \). Suppose \( \theta = \sin^{-1}(x) \), which implies \( \sin(\theta) = x \) and \( \theta \) is an angle.
2. Double Angle Identity: We now need to evaluate \( \sin(2\theta) \) where \( \theta = \sin^{-1}(x) \). Using the double angle identity for sine, we have:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
3. Substitution for \( \sin(\theta) \): From our initial substitution, we know \( \sin(\theta) = x \).
4. Finding \( \cos(\theta) \): To find \( \cos(\theta) \), we use the Pythagorean identity. Since \( \sin(\theta) = x \), we have:
[tex]\[ \cos(\theta) = \sqrt{1 - \sin^2(\theta)} = \sqrt{1 - x^2} \][/tex]
5. Putting it All Together: Using the information above in the double angle identity, we get:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \sqrt{1 - x^2} \][/tex]
6. Scaling by 2: Finally, the original expression was \( 2 \sin (2 \sin^{-1} x) \):
[tex]\[ 2 \sin(2 \theta) = 2(2 x \sqrt{1 - x^2}) = 4 x \sqrt{1 - x^2} \][/tex]
Therefore, the expression \( 2 \sin \left(2 \sin^{-1} x \right) \) can be written as the algebraic expression:
[tex]\[ 4 x \sqrt{1 - x^2} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.