Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
To evaluate the expression \(\arcsin\left(\frac{1}{2}\right)\), follow these steps:
1. **Understand the Function:**
- \(\arcsin(x)\) is the inverse function of \(\sin(x)\).
- This means \(\arcsin(x)\) returns the angle \(\theta\) such that \(\sin(\theta) = x\).
2. **Identify the Range:**
- The range of \(\arcsin(x)\) is \([- \frac{\pi}{2}, \frac{\pi}{2}]\). This is the interval in which \(\theta\) will lie.
3. **Solve for the Angle:**
- We need to find the angle \(\theta\) such that \(\sin(\theta) = \frac{1}{2}\).
- Recall the unit circle or trigonometric values: \(\sin(\frac{\pi}{6}) = \frac{1}{2}\).
4. **Verify the Angle Lies in the Range:**
- \(\frac{\pi}{6}\) is within the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\).
5. **Conclusion:**
- Therefore, \(\arcsin\left(\frac{1}{2}\right) = \frac{\pi}{6}\).
So, the value of \(\arcsin\left(\frac{1}{2}\right)\) is \(\frac{\pi}{6}\).
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.