Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To write the expression \( 4 \sin \left(2 \sin^{-1} x \right) \) as an algebraic expression in \( x \) for \( x > 0 \), follow these steps:
1. Let \(\theta = \sin^{-1}(x)\):
Since \(\theta\) is the angle whose sine is \(x\), we have:
[tex]\[ \sin(\theta) = x \][/tex]
and
[tex]\[ \theta = \sin^{-1}(x) \][/tex]
2. Work with the double angle identity:
We need to express \(\sin(2\theta)\) where \(\theta = \sin^{-1}(x)\). The double angle identity for sine is:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
3. Substitute \(\sin(\theta) = x\):
Now we have:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \cos(\theta) \][/tex]
4. Find \(\cos(\theta)\):
Given \(\sin(\theta) = x\), we can use the Pythagorean identity to find \(\cos(\theta)\). Recall that:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Since \(\sin^2(\theta) = x^2\), we get:
[tex]\[ x^2 + \cos^2(\theta) = 1 \][/tex]
Hence,
[tex]\[ \cos^2(\theta) = 1 - x^2 \][/tex]
Taking the positive square root (since \( x > 0 \) and we work within the principal range of arcsine \(0 \leq \theta \leq \frac{\pi}{2}\)):
[tex]\[ \cos(\theta) = \sqrt{1 - x^2} \][/tex]
5. Substitute \(\cos(\theta)\) back into the expression for \(\sin(2\theta)\):
[tex]\[ \sin(2\theta) = 2x \cos(\theta) = 2x \sqrt{1 - x^2} \][/tex]
6. Multiply by 4:
Finally, substitute \(\sin(2 \sin^{-1}(x))\) back into the original expression and multiply by 4:
[tex]\[ 4 \sin(2\sin^{-1}(x)) = 4 \cdot 2x \sqrt{1 - x^2} \][/tex]
Simplifying, we obtain:
[tex]\[ 4 \sin(2\sin^{-1}(x)) = 8x \sqrt{1 - x^2} \][/tex]
Therefore, the expression \( 4 \sin \left( 2 \sin^{-1} x \right) \) written as an algebraic expression in \( x \) for \( x > 0 \) is:
[tex]\[ 8x \sqrt{1 - x^2} \][/tex]
1. Let \(\theta = \sin^{-1}(x)\):
Since \(\theta\) is the angle whose sine is \(x\), we have:
[tex]\[ \sin(\theta) = x \][/tex]
and
[tex]\[ \theta = \sin^{-1}(x) \][/tex]
2. Work with the double angle identity:
We need to express \(\sin(2\theta)\) where \(\theta = \sin^{-1}(x)\). The double angle identity for sine is:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \][/tex]
3. Substitute \(\sin(\theta) = x\):
Now we have:
[tex]\[ \sin(2\theta) = 2 \sin(\theta) \cos(\theta) = 2x \cos(\theta) \][/tex]
4. Find \(\cos(\theta)\):
Given \(\sin(\theta) = x\), we can use the Pythagorean identity to find \(\cos(\theta)\). Recall that:
[tex]\[ \sin^2(\theta) + \cos^2(\theta) = 1 \][/tex]
Since \(\sin^2(\theta) = x^2\), we get:
[tex]\[ x^2 + \cos^2(\theta) = 1 \][/tex]
Hence,
[tex]\[ \cos^2(\theta) = 1 - x^2 \][/tex]
Taking the positive square root (since \( x > 0 \) and we work within the principal range of arcsine \(0 \leq \theta \leq \frac{\pi}{2}\)):
[tex]\[ \cos(\theta) = \sqrt{1 - x^2} \][/tex]
5. Substitute \(\cos(\theta)\) back into the expression for \(\sin(2\theta)\):
[tex]\[ \sin(2\theta) = 2x \cos(\theta) = 2x \sqrt{1 - x^2} \][/tex]
6. Multiply by 4:
Finally, substitute \(\sin(2 \sin^{-1}(x))\) back into the original expression and multiply by 4:
[tex]\[ 4 \sin(2\sin^{-1}(x)) = 4 \cdot 2x \sqrt{1 - x^2} \][/tex]
Simplifying, we obtain:
[tex]\[ 4 \sin(2\sin^{-1}(x)) = 8x \sqrt{1 - x^2} \][/tex]
Therefore, the expression \( 4 \sin \left( 2 \sin^{-1} x \right) \) written as an algebraic expression in \( x \) for \( x > 0 \) is:
[tex]\[ 8x \sqrt{1 - x^2} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.