Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify the expression \(\frac{4}{\sqrt{2} - 2\sqrt{3}}\), we need to rationalize the denominator. This involves getting rid of the square roots in the denominator by multiplying both the numerator and the denominator by the conjugate of the denominator.
1. Identify the conjugate of the denominator:
The conjugate of \(\sqrt{2} - 2\sqrt{3}\) is \(\sqrt{2} + 2\sqrt{3}\).
2. Multiply the numerator and the denominator by the conjugate:
[tex]\[ \frac{4}{\sqrt{2} - 2\sqrt{3}} \times \frac{\sqrt{2} + 2\sqrt{3}}{\sqrt{2} + 2\sqrt{3}} \][/tex]
3. Distribute the numerator:
[tex]\[ 4 \cdot (\sqrt{2} + 2\sqrt{3}) = 4\sqrt{2} + 8\sqrt{3} \][/tex]
4. Use the difference of squares formula for the denominator:
[tex]\[ (\sqrt{2} - 2\sqrt{3})(\sqrt{2} + 2\sqrt{3}) = (\sqrt{2})^2 - (2\sqrt{3})^2 \][/tex]
[tex]\[ (\sqrt{2})^2 = 2 \][/tex]
[tex]\[ (2\sqrt{3})^2 = 4 \cdot 3 = 12 \][/tex]
[tex]\[ \text{So, the denominator becomes } 2 - 12 = -10 \][/tex]
5. Combine the results:
[tex]\[ \frac{4\sqrt{2} + 8\sqrt{3}}{-10} \][/tex]
6. Simplify the fraction:
[tex]\[ \frac{4\sqrt{2} + 8\sqrt{3}}{-10} = \frac{4(\sqrt{2} + 2\sqrt{3})}{-10} = \frac{4(\sqrt{2} + 2\sqrt{3})}{-10} = -\frac{2(\sqrt{2} + 2\sqrt{3})}{5} \][/tex]
Finally, if we compute the numerical value of this simplified version, we get:
[tex]\[ \sqrt{2} + 2\sqrt{3} \approx 3.9026521420086793 \][/tex]
Multiplying by -\(\frac{2}{5}\), the result is approximately:
[tex]\[ -\frac{2 \cdot 3.9026521420086793}{5} \approx -1.9513260710043396 \][/tex]
Thus, the simplified version of the expression [tex]\(\frac{4}{\sqrt{2} - 2\sqrt{3}}\)[/tex] is [tex]\(-\frac{2(\sqrt{2} + 2\sqrt{3})}{5}\)[/tex] and its approximate numerical value is [tex]\(-1.9513260710043396\)[/tex]. The calculated result confirms that the value of the denominator is [tex]\(-10\)[/tex] and the final numerical result is indeed approximately [tex]\(-1.9513260710043396\)[/tex].
1. Identify the conjugate of the denominator:
The conjugate of \(\sqrt{2} - 2\sqrt{3}\) is \(\sqrt{2} + 2\sqrt{3}\).
2. Multiply the numerator and the denominator by the conjugate:
[tex]\[ \frac{4}{\sqrt{2} - 2\sqrt{3}} \times \frac{\sqrt{2} + 2\sqrt{3}}{\sqrt{2} + 2\sqrt{3}} \][/tex]
3. Distribute the numerator:
[tex]\[ 4 \cdot (\sqrt{2} + 2\sqrt{3}) = 4\sqrt{2} + 8\sqrt{3} \][/tex]
4. Use the difference of squares formula for the denominator:
[tex]\[ (\sqrt{2} - 2\sqrt{3})(\sqrt{2} + 2\sqrt{3}) = (\sqrt{2})^2 - (2\sqrt{3})^2 \][/tex]
[tex]\[ (\sqrt{2})^2 = 2 \][/tex]
[tex]\[ (2\sqrt{3})^2 = 4 \cdot 3 = 12 \][/tex]
[tex]\[ \text{So, the denominator becomes } 2 - 12 = -10 \][/tex]
5. Combine the results:
[tex]\[ \frac{4\sqrt{2} + 8\sqrt{3}}{-10} \][/tex]
6. Simplify the fraction:
[tex]\[ \frac{4\sqrt{2} + 8\sqrt{3}}{-10} = \frac{4(\sqrt{2} + 2\sqrt{3})}{-10} = \frac{4(\sqrt{2} + 2\sqrt{3})}{-10} = -\frac{2(\sqrt{2} + 2\sqrt{3})}{5} \][/tex]
Finally, if we compute the numerical value of this simplified version, we get:
[tex]\[ \sqrt{2} + 2\sqrt{3} \approx 3.9026521420086793 \][/tex]
Multiplying by -\(\frac{2}{5}\), the result is approximately:
[tex]\[ -\frac{2 \cdot 3.9026521420086793}{5} \approx -1.9513260710043396 \][/tex]
Thus, the simplified version of the expression [tex]\(\frac{4}{\sqrt{2} - 2\sqrt{3}}\)[/tex] is [tex]\(-\frac{2(\sqrt{2} + 2\sqrt{3})}{5}\)[/tex] and its approximate numerical value is [tex]\(-1.9513260710043396\)[/tex]. The calculated result confirms that the value of the denominator is [tex]\(-10\)[/tex] and the final numerical result is indeed approximately [tex]\(-1.9513260710043396\)[/tex].
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.