Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the given trigonometric equation step-by-step and find all solutions for \(x\) in the interval \([0, 2\pi)\). The given equation is:
[tex]\[ 5 \sin(2x) = -7.5 \cos(x) \][/tex]
To solve this equation, follow these steps:
### Step 1: Express \(\sin(2x)\) in terms of \(\sin(x)\) and \(\cos(x)\)
Recall the double-angle identity:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
Using this identity, rewrite the equation:
[tex]\[ 5 \cdot 2 \sin(x) \cos(x) = -7.5 \cos(x) \][/tex]
[tex]\[ 10 \sin(x) \cos(x) = -7.5 \cos(x) \][/tex]
### Step 2: Simplify the equation
Since \(\cos(x) \neq 0\) at some points in the interval \([0, 2\pi)\), we can divide both sides by \(\cos(x)\) (so long as \(\cos(x) \neq 0\)):
[tex]\[ 10 \sin(x) = -7.5 \][/tex]
[tex]\[ \sin(x) = -0.75 \][/tex]
### Step 3: Find the general solutions for \(\sin(x) = -0.75\)
We use the inverse sine function to find the solutions for \(x\):
[tex]\[ x = \sin^{-1}(-0.75) \][/tex]
The principal value of \( x \) in the interval \([-\pi/2, \pi/2]\) is:
[tex]\[ x = -\sin^{-1}(0.75) \approx -0.8481 \][/tex]
Since this lies outside the interval \([0, 2\pi)\), we need to adjust the angle to lie within the given interval. Recall sine's symmetry properties to find appropriate solutions. Specifically, the sine function gives solutions in the form:
[tex]\[ x = \pi + \sin^{-1}(0.75) \quad \text{and} \quad x = 2\pi - \sin^{-1}(0.75) \][/tex]
Where we account for symmetry about \(\pi\) and \(2\pi -\theta\):
[tex]\[ x_1 = \pi + \sin^{-1}(0.75) \][/tex]
[tex]\[ x_2 = 2\pi - \sin^{-1}(0.75) \approx 3.9900, 5.4351 \text{(since \text{2}\pi}\approx6.2832 \) ### Step 4: Collect additional solutions Since \(\cos(x) = 0\) also provides some critical angles and additional points like \(\pi/2\) and \(3\pi/2\), re-estimated these angles would be: \[ \boxed{x = \frac{\pi}{2}} \][/tex]
[tex]\[ x_4 =3/2 \pi \][/tex]
### Step 5: Arrange the solutions in the interval \([0, 2\pi)\)
Summarizing the steps above, the solutions to the equation in the interval \([0, 2\pi)\) are:
[tex]\[ x_1 \approx 1.5708\][/tex]
[tex]\[ x_2 \approx 3.9900\][/tex]
[tex]\[ x \approx 4.7124\][/tex]
[tex]\[ x_3 \approx5.4351\][/tex]
Arranging solutions in increasing order:
[tex]\[ x \approx 1.5708,3.9900, 4.7124, 5.4351 \][/tex]
These are the desired approximate solutions to four decimal places.
So the solutions to the equation \(5 \sin(2x) = -7.5 \cos(x)\) in the interval \([0, 2\pi)\) are:
[tex]\[ \boxed{ \begin{array}{l} x \approx 1.5708 \text{ (smallest value) } \\ x \approx 3.9900 \\ x \approx 4.7124 \\ x \approx 5.4351 \text{ (largest value) } \end{array} } \][/tex]
[tex]\[ 5 \sin(2x) = -7.5 \cos(x) \][/tex]
To solve this equation, follow these steps:
### Step 1: Express \(\sin(2x)\) in terms of \(\sin(x)\) and \(\cos(x)\)
Recall the double-angle identity:
[tex]\[ \sin(2x) = 2 \sin(x) \cos(x) \][/tex]
Using this identity, rewrite the equation:
[tex]\[ 5 \cdot 2 \sin(x) \cos(x) = -7.5 \cos(x) \][/tex]
[tex]\[ 10 \sin(x) \cos(x) = -7.5 \cos(x) \][/tex]
### Step 2: Simplify the equation
Since \(\cos(x) \neq 0\) at some points in the interval \([0, 2\pi)\), we can divide both sides by \(\cos(x)\) (so long as \(\cos(x) \neq 0\)):
[tex]\[ 10 \sin(x) = -7.5 \][/tex]
[tex]\[ \sin(x) = -0.75 \][/tex]
### Step 3: Find the general solutions for \(\sin(x) = -0.75\)
We use the inverse sine function to find the solutions for \(x\):
[tex]\[ x = \sin^{-1}(-0.75) \][/tex]
The principal value of \( x \) in the interval \([-\pi/2, \pi/2]\) is:
[tex]\[ x = -\sin^{-1}(0.75) \approx -0.8481 \][/tex]
Since this lies outside the interval \([0, 2\pi)\), we need to adjust the angle to lie within the given interval. Recall sine's symmetry properties to find appropriate solutions. Specifically, the sine function gives solutions in the form:
[tex]\[ x = \pi + \sin^{-1}(0.75) \quad \text{and} \quad x = 2\pi - \sin^{-1}(0.75) \][/tex]
Where we account for symmetry about \(\pi\) and \(2\pi -\theta\):
[tex]\[ x_1 = \pi + \sin^{-1}(0.75) \][/tex]
[tex]\[ x_2 = 2\pi - \sin^{-1}(0.75) \approx 3.9900, 5.4351 \text{(since \text{2}\pi}\approx6.2832 \) ### Step 4: Collect additional solutions Since \(\cos(x) = 0\) also provides some critical angles and additional points like \(\pi/2\) and \(3\pi/2\), re-estimated these angles would be: \[ \boxed{x = \frac{\pi}{2}} \][/tex]
[tex]\[ x_4 =3/2 \pi \][/tex]
### Step 5: Arrange the solutions in the interval \([0, 2\pi)\)
Summarizing the steps above, the solutions to the equation in the interval \([0, 2\pi)\) are:
[tex]\[ x_1 \approx 1.5708\][/tex]
[tex]\[ x_2 \approx 3.9900\][/tex]
[tex]\[ x \approx 4.7124\][/tex]
[tex]\[ x_3 \approx5.4351\][/tex]
Arranging solutions in increasing order:
[tex]\[ x \approx 1.5708,3.9900, 4.7124, 5.4351 \][/tex]
These are the desired approximate solutions to four decimal places.
So the solutions to the equation \(5 \sin(2x) = -7.5 \cos(x)\) in the interval \([0, 2\pi)\) are:
[tex]\[ \boxed{ \begin{array}{l} x \approx 1.5708 \text{ (smallest value) } \\ x \approx 3.9900 \\ x \approx 4.7124 \\ x \approx 5.4351 \text{ (largest value) } \end{array} } \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.