Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the possible range for the distance \( d \) between Lincoln, NE, and the third city, given the distances between Lincoln and Boulder (500 miles) and Boulder and the third city (200 miles), we can use the triangle inequality theorem. The theorem states that for any triangle with sides \( a \), \( b \), and \( c \):
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this context, let's consider:
- \( a = 500 \): the distance between Lincoln and Boulder.
- \( b = 200 \): the distance between Boulder and the third city.
- \( c = d \): the distance between Lincoln and the third city, which we need to find.
Applying the triangle inequality theorem:
1. \( 500 + 200 > d \)
Simplifying this inequality:
[tex]\[ 700 > d \][/tex]
2. \( 500 + d > 200 \)
Simplifying this inequality:
[tex]\[ d > 200 - 500 \][/tex]
[tex]\[ d > -300 \][/tex]
However, since \( d \) represents a distance and must be positive, this inequality does not provide a restrictive lower bound. Thus, this inequality can be considered always true.
3. \( d + 200 > 500 \)
Simplifying this inequality:
[tex]\[ d > 500 - 200 \][/tex]
[tex]\[ d > 300 \][/tex]
Combining the results from the valid inequalities, we get:
[tex]\[ 300 < d < 700 \][/tex]
Thus, the possible distance \( d \) between Lincoln, NE, and the third city must satisfy:
[tex]\[ \boxed{300 < d < 700} \][/tex]
1. \( a + b > c \)
2. \( a + c > b \)
3. \( b + c > a \)
In this context, let's consider:
- \( a = 500 \): the distance between Lincoln and Boulder.
- \( b = 200 \): the distance between Boulder and the third city.
- \( c = d \): the distance between Lincoln and the third city, which we need to find.
Applying the triangle inequality theorem:
1. \( 500 + 200 > d \)
Simplifying this inequality:
[tex]\[ 700 > d \][/tex]
2. \( 500 + d > 200 \)
Simplifying this inequality:
[tex]\[ d > 200 - 500 \][/tex]
[tex]\[ d > -300 \][/tex]
However, since \( d \) represents a distance and must be positive, this inequality does not provide a restrictive lower bound. Thus, this inequality can be considered always true.
3. \( d + 200 > 500 \)
Simplifying this inequality:
[tex]\[ d > 500 - 200 \][/tex]
[tex]\[ d > 300 \][/tex]
Combining the results from the valid inequalities, we get:
[tex]\[ 300 < d < 700 \][/tex]
Thus, the possible distance \( d \) between Lincoln, NE, and the third city must satisfy:
[tex]\[ \boxed{300 < d < 700} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.