Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Sure, let's find the mean and the median of the given age distribution for the 70 employees in a company.
### Step-by-Step Solution:
#### a) Mean Calculation
1. Class Intervals and Frequencies:
- Class intervals: 19-20, 21-25, 26-35, 36-40
- Frequencies: 2, 10, 18, 40
2. Midpoints of Each Class Interval:
To find the midpoint (also called class mark) of each interval, use the formula \((\text{lower boundary} + \text{upper boundary}) / 2\):
- Midpoint of 19-20 = \((19 + 20) / 2 = 19.5\)
- Midpoint of 21-25 = \((21 + 25) / 2 = 23\)
- Midpoint of 26-35 = \((26 + 35) / 2 = 30.5\)
- Midpoint of 36-40 = \((36 + 40) / 2 = 38\)
3. Total Frequency:
The total frequency is the sum of all frequencies:
[tex]\[ 2 + 10 + 18 + 40 = 70 \][/tex]
4. Mean Calculation:
The mean can be found using the formula:
[tex]\[ \text{Mean} = \frac{\sum (\text{midpoint} \times \text{frequency})}{\text{total frequency}} \][/tex]
Plugging in the values:
[tex]\[ \sum (\text{midpoint} \times \text{frequency}) = (19.5 \times 2) + (23 \times 10) + (30.5 \times 18) + (38 \times 40) \][/tex]
Simplifying:
[tex]\[ = 39 + 230 + 549 + 1520 = 2338 \][/tex]
Finally, the mean:
[tex]\[ \text{Mean} = \frac{2338}{70} \approx 33.4 \][/tex]
#### b) Median Calculation
1. Cumulative Frequency:
To find the median, we first need the cumulative frequency for each class:
- Cumulative frequency of 19-20 = 2
- Cumulative frequency of 21-25 = 2 + 10 = 12
- Cumulative frequency of 26-35 = 12 + 18 = 30
- Cumulative frequency of 36-40 = 30 + 40 = 70
2. Determine the Median Class:
The median class is the class where the cumulative frequency exceeds half of the total frequency. Here, half of 70 is 35.
- Cumulative frequencies:
- 2 (first interval)
- 12 (second interval)
- 30 (third interval)
- 70 (fourth interval)
The median class is therefore 36-40 as its cumulative frequency is the first to exceed 35.
3. Median Calculation:
For the median, use the formula:
[tex]\[ \text{Median} = L + \left(\frac{\frac{N}{2} - CF}{f}\right) \times h \][/tex]
Where:
- \(L\) = lower boundary of the median class (36)
- \(N\) = total frequency (70)
- \(CF\) = cumulative frequency before the median class (30)
- \(f\) = frequency of the median class (40)
- \(h\) = class width (\(40 - 36 = 4\))
Plugging in the values:
[tex]\[ \text{Median} = 36 + \left(\frac{35 - 30}{40}\right) \times 4 \][/tex]
Simplifying:
[tex]\[ \text{Median} = 36 + \left(\frac{5}{40}\right) \times 4 \][/tex]
[tex]\[ \text{Median} = 36 + 0.5 = 36.5 \][/tex]
### Final Results:
- Mean: 33.4
- Median: 36.5
### Step-by-Step Solution:
#### a) Mean Calculation
1. Class Intervals and Frequencies:
- Class intervals: 19-20, 21-25, 26-35, 36-40
- Frequencies: 2, 10, 18, 40
2. Midpoints of Each Class Interval:
To find the midpoint (also called class mark) of each interval, use the formula \((\text{lower boundary} + \text{upper boundary}) / 2\):
- Midpoint of 19-20 = \((19 + 20) / 2 = 19.5\)
- Midpoint of 21-25 = \((21 + 25) / 2 = 23\)
- Midpoint of 26-35 = \((26 + 35) / 2 = 30.5\)
- Midpoint of 36-40 = \((36 + 40) / 2 = 38\)
3. Total Frequency:
The total frequency is the sum of all frequencies:
[tex]\[ 2 + 10 + 18 + 40 = 70 \][/tex]
4. Mean Calculation:
The mean can be found using the formula:
[tex]\[ \text{Mean} = \frac{\sum (\text{midpoint} \times \text{frequency})}{\text{total frequency}} \][/tex]
Plugging in the values:
[tex]\[ \sum (\text{midpoint} \times \text{frequency}) = (19.5 \times 2) + (23 \times 10) + (30.5 \times 18) + (38 \times 40) \][/tex]
Simplifying:
[tex]\[ = 39 + 230 + 549 + 1520 = 2338 \][/tex]
Finally, the mean:
[tex]\[ \text{Mean} = \frac{2338}{70} \approx 33.4 \][/tex]
#### b) Median Calculation
1. Cumulative Frequency:
To find the median, we first need the cumulative frequency for each class:
- Cumulative frequency of 19-20 = 2
- Cumulative frequency of 21-25 = 2 + 10 = 12
- Cumulative frequency of 26-35 = 12 + 18 = 30
- Cumulative frequency of 36-40 = 30 + 40 = 70
2. Determine the Median Class:
The median class is the class where the cumulative frequency exceeds half of the total frequency. Here, half of 70 is 35.
- Cumulative frequencies:
- 2 (first interval)
- 12 (second interval)
- 30 (third interval)
- 70 (fourth interval)
The median class is therefore 36-40 as its cumulative frequency is the first to exceed 35.
3. Median Calculation:
For the median, use the formula:
[tex]\[ \text{Median} = L + \left(\frac{\frac{N}{2} - CF}{f}\right) \times h \][/tex]
Where:
- \(L\) = lower boundary of the median class (36)
- \(N\) = total frequency (70)
- \(CF\) = cumulative frequency before the median class (30)
- \(f\) = frequency of the median class (40)
- \(h\) = class width (\(40 - 36 = 4\))
Plugging in the values:
[tex]\[ \text{Median} = 36 + \left(\frac{35 - 30}{40}\right) \times 4 \][/tex]
Simplifying:
[tex]\[ \text{Median} = 36 + \left(\frac{5}{40}\right) \times 4 \][/tex]
[tex]\[ \text{Median} = 36 + 0.5 = 36.5 \][/tex]
### Final Results:
- Mean: 33.4
- Median: 36.5
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.