At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

The domain of [tex]f(x)=\frac{x-1}{x^2+1}[/tex] is

Sagot :

To determine the domain of the function \( f(x) = \frac{x-1}{x^2+1} \), we need to identify all the possible values of \( x \) that can be input into the function without causing any mathematical issues, particularly focusing on points where the function might be undefined.

1. Identify the potential source of undefined behavior:
- The most common issue that can make a function undefined is division by zero. Therefore, we need to check if the denominator of the function can ever be zero.

2. Analyze the denominator:
- The denominator of our function is \( x^2 + 1 \).
- We need to determine when \( x^2 + 1 = 0 \).

3. Solve for zeros in the denominator:
- Set the denominator equal to zero:
[tex]\[ x^2 + 1 = 0 \][/tex]
- Solve for \( x \):
[tex]\[ x^2 = -1 \][/tex]
Here, we see that \( x^2 = -1 \) has no real solutions because the square of a real number is always non-negative, and adding 1 to a non-negative number is always positive.

4. Conclusion:
- Since \( x^2 + 1 \) is always positive for all real numbers \( x \) (it can never be zero), there are no values of \( x \) that will make the denominator equal to zero.

Thus, the function \( f(x) = \frac{x-1}{x^2+1} \) has no restrictions on \( x \). This means that \( f(x) \) is defined for all real numbers.

The domain of the function [tex]\( f(x) = \frac{x-1}{x^2+1} \)[/tex] is all real numbers.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.