Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the domain of the function \( f(x) = \frac{x-1}{x^2+1} \), we need to identify all the possible values of \( x \) that can be input into the function without causing any mathematical issues, particularly focusing on points where the function might be undefined.
1. Identify the potential source of undefined behavior:
- The most common issue that can make a function undefined is division by zero. Therefore, we need to check if the denominator of the function can ever be zero.
2. Analyze the denominator:
- The denominator of our function is \( x^2 + 1 \).
- We need to determine when \( x^2 + 1 = 0 \).
3. Solve for zeros in the denominator:
- Set the denominator equal to zero:
[tex]\[ x^2 + 1 = 0 \][/tex]
- Solve for \( x \):
[tex]\[ x^2 = -1 \][/tex]
Here, we see that \( x^2 = -1 \) has no real solutions because the square of a real number is always non-negative, and adding 1 to a non-negative number is always positive.
4. Conclusion:
- Since \( x^2 + 1 \) is always positive for all real numbers \( x \) (it can never be zero), there are no values of \( x \) that will make the denominator equal to zero.
Thus, the function \( f(x) = \frac{x-1}{x^2+1} \) has no restrictions on \( x \). This means that \( f(x) \) is defined for all real numbers.
The domain of the function [tex]\( f(x) = \frac{x-1}{x^2+1} \)[/tex] is all real numbers.
1. Identify the potential source of undefined behavior:
- The most common issue that can make a function undefined is division by zero. Therefore, we need to check if the denominator of the function can ever be zero.
2. Analyze the denominator:
- The denominator of our function is \( x^2 + 1 \).
- We need to determine when \( x^2 + 1 = 0 \).
3. Solve for zeros in the denominator:
- Set the denominator equal to zero:
[tex]\[ x^2 + 1 = 0 \][/tex]
- Solve for \( x \):
[tex]\[ x^2 = -1 \][/tex]
Here, we see that \( x^2 = -1 \) has no real solutions because the square of a real number is always non-negative, and adding 1 to a non-negative number is always positive.
4. Conclusion:
- Since \( x^2 + 1 \) is always positive for all real numbers \( x \) (it can never be zero), there are no values of \( x \) that will make the denominator equal to zero.
Thus, the function \( f(x) = \frac{x-1}{x^2+1} \) has no restrictions on \( x \). This means that \( f(x) \) is defined for all real numbers.
The domain of the function [tex]\( f(x) = \frac{x-1}{x^2+1} \)[/tex] is all real numbers.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.