Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \), we need to analyze the conditions that ensure the function is defined. The domain is the set of all possible values of \( x \) for which \( g(x) \) is defined.
Step-by-step analysis:
1. Numerator Analysis:
The numerator is \( \sqrt{x-2} \).
- A square root function only has real values when the expression inside the square root is non-negative.
- Thus, \( x - 2 \geq 0 \).
Therefore, we get:
[tex]\[ x \geq 2 \][/tex]
2. Denominator Analysis:
The denominator is \( x^2 - x \).
- For the function to be defined, the denominator cannot be zero because division by zero is undefined.
- Factor the denominator: \( x^2 - x = x(x - 1) \).
Set the denominator equal to zero to find the values that make the denominator zero:
[tex]\[ x(x - 1) = 0 \][/tex]
Solving this equation gives:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, \( x \neq 0 \) and \( x \neq 1 \).
3. Combined conditions:
We combine the conditions from the numerator and the denominator to find the domain.
- From the numerator: \( x \geq 2 \)
- From the denominator: \( x \neq 0 \) and \( x \neq 1 \).
The condition \( x \geq 2 \) already excludes the values \( x = 0 \) and \( x = 1 \) because \( 0 < 2 \) and \( 1 < 2 \).
Therefore, we only need to consider the condition \( x \geq 2 \).
Conclusion:
The domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \) is all \( x \) such that:
[tex]\[ x \geq 2 \][/tex]
So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq 2 \)[/tex].
Step-by-step analysis:
1. Numerator Analysis:
The numerator is \( \sqrt{x-2} \).
- A square root function only has real values when the expression inside the square root is non-negative.
- Thus, \( x - 2 \geq 0 \).
Therefore, we get:
[tex]\[ x \geq 2 \][/tex]
2. Denominator Analysis:
The denominator is \( x^2 - x \).
- For the function to be defined, the denominator cannot be zero because division by zero is undefined.
- Factor the denominator: \( x^2 - x = x(x - 1) \).
Set the denominator equal to zero to find the values that make the denominator zero:
[tex]\[ x(x - 1) = 0 \][/tex]
Solving this equation gives:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, \( x \neq 0 \) and \( x \neq 1 \).
3. Combined conditions:
We combine the conditions from the numerator and the denominator to find the domain.
- From the numerator: \( x \geq 2 \)
- From the denominator: \( x \neq 0 \) and \( x \neq 1 \).
The condition \( x \geq 2 \) already excludes the values \( x = 0 \) and \( x = 1 \) because \( 0 < 2 \) and \( 1 < 2 \).
Therefore, we only need to consider the condition \( x \geq 2 \).
Conclusion:
The domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \) is all \( x \) such that:
[tex]\[ x \geq 2 \][/tex]
So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq 2 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.