Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \), we need to analyze the conditions that ensure the function is defined. The domain is the set of all possible values of \( x \) for which \( g(x) \) is defined.
Step-by-step analysis:
1. Numerator Analysis:
The numerator is \( \sqrt{x-2} \).
- A square root function only has real values when the expression inside the square root is non-negative.
- Thus, \( x - 2 \geq 0 \).
Therefore, we get:
[tex]\[ x \geq 2 \][/tex]
2. Denominator Analysis:
The denominator is \( x^2 - x \).
- For the function to be defined, the denominator cannot be zero because division by zero is undefined.
- Factor the denominator: \( x^2 - x = x(x - 1) \).
Set the denominator equal to zero to find the values that make the denominator zero:
[tex]\[ x(x - 1) = 0 \][/tex]
Solving this equation gives:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, \( x \neq 0 \) and \( x \neq 1 \).
3. Combined conditions:
We combine the conditions from the numerator and the denominator to find the domain.
- From the numerator: \( x \geq 2 \)
- From the denominator: \( x \neq 0 \) and \( x \neq 1 \).
The condition \( x \geq 2 \) already excludes the values \( x = 0 \) and \( x = 1 \) because \( 0 < 2 \) and \( 1 < 2 \).
Therefore, we only need to consider the condition \( x \geq 2 \).
Conclusion:
The domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \) is all \( x \) such that:
[tex]\[ x \geq 2 \][/tex]
So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq 2 \)[/tex].
Step-by-step analysis:
1. Numerator Analysis:
The numerator is \( \sqrt{x-2} \).
- A square root function only has real values when the expression inside the square root is non-negative.
- Thus, \( x - 2 \geq 0 \).
Therefore, we get:
[tex]\[ x \geq 2 \][/tex]
2. Denominator Analysis:
The denominator is \( x^2 - x \).
- For the function to be defined, the denominator cannot be zero because division by zero is undefined.
- Factor the denominator: \( x^2 - x = x(x - 1) \).
Set the denominator equal to zero to find the values that make the denominator zero:
[tex]\[ x(x - 1) = 0 \][/tex]
Solving this equation gives:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, \( x \neq 0 \) and \( x \neq 1 \).
3. Combined conditions:
We combine the conditions from the numerator and the denominator to find the domain.
- From the numerator: \( x \geq 2 \)
- From the denominator: \( x \neq 0 \) and \( x \neq 1 \).
The condition \( x \geq 2 \) already excludes the values \( x = 0 \) and \( x = 1 \) because \( 0 < 2 \) and \( 1 < 2 \).
Therefore, we only need to consider the condition \( x \geq 2 \).
Conclusion:
The domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \) is all \( x \) such that:
[tex]\[ x \geq 2 \][/tex]
So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq 2 \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.