Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \), we need to analyze the conditions that ensure the function is defined. The domain is the set of all possible values of \( x \) for which \( g(x) \) is defined.
Step-by-step analysis:
1. Numerator Analysis:
The numerator is \( \sqrt{x-2} \).
- A square root function only has real values when the expression inside the square root is non-negative.
- Thus, \( x - 2 \geq 0 \).
Therefore, we get:
[tex]\[ x \geq 2 \][/tex]
2. Denominator Analysis:
The denominator is \( x^2 - x \).
- For the function to be defined, the denominator cannot be zero because division by zero is undefined.
- Factor the denominator: \( x^2 - x = x(x - 1) \).
Set the denominator equal to zero to find the values that make the denominator zero:
[tex]\[ x(x - 1) = 0 \][/tex]
Solving this equation gives:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, \( x \neq 0 \) and \( x \neq 1 \).
3. Combined conditions:
We combine the conditions from the numerator and the denominator to find the domain.
- From the numerator: \( x \geq 2 \)
- From the denominator: \( x \neq 0 \) and \( x \neq 1 \).
The condition \( x \geq 2 \) already excludes the values \( x = 0 \) and \( x = 1 \) because \( 0 < 2 \) and \( 1 < 2 \).
Therefore, we only need to consider the condition \( x \geq 2 \).
Conclusion:
The domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \) is all \( x \) such that:
[tex]\[ x \geq 2 \][/tex]
So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq 2 \)[/tex].
Step-by-step analysis:
1. Numerator Analysis:
The numerator is \( \sqrt{x-2} \).
- A square root function only has real values when the expression inside the square root is non-negative.
- Thus, \( x - 2 \geq 0 \).
Therefore, we get:
[tex]\[ x \geq 2 \][/tex]
2. Denominator Analysis:
The denominator is \( x^2 - x \).
- For the function to be defined, the denominator cannot be zero because division by zero is undefined.
- Factor the denominator: \( x^2 - x = x(x - 1) \).
Set the denominator equal to zero to find the values that make the denominator zero:
[tex]\[ x(x - 1) = 0 \][/tex]
Solving this equation gives:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]
Therefore, \( x \neq 0 \) and \( x \neq 1 \).
3. Combined conditions:
We combine the conditions from the numerator and the denominator to find the domain.
- From the numerator: \( x \geq 2 \)
- From the denominator: \( x \neq 0 \) and \( x \neq 1 \).
The condition \( x \geq 2 \) already excludes the values \( x = 0 \) and \( x = 1 \) because \( 0 < 2 \) and \( 1 < 2 \).
Therefore, we only need to consider the condition \( x \geq 2 \).
Conclusion:
The domain of the function \( g(x) = \frac{\sqrt{x-2}}{x^2 - x} \) is all \( x \) such that:
[tex]\[ x \geq 2 \][/tex]
So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( x \geq 2 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.