Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's break down the steps to find the amount of money that Charlie must pay back after taking out a loan of [tex]$20,000 with a compound interest rate of $[/tex]4\%$ per year for 3 years.
1. Principal (P): The initial amount of money borrowed. For this loan, \( P = £ 20,000 \).
2. Rate (r): The annual interest rate. In this case, \( r = 4\% \) per year. To use this rate in calculations, we convert it to a decimal: \( r = \frac{4}{100} = 0.04 \).
3. Time (t): The number of years the money is borrowed for. Here, \( t = 3 \) years.
4. Compounding Periods (n): Since the interest is compounded annually, \( n = 1 \).
The compound interest formula to calculate the amount (A) to be paid back is given by:
[tex]\[ A = P \times \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values we have:
[tex]\[ A = 20,000 \times \left(1 + \frac{0.04}{1}\right)^{1 \times 3} \][/tex]
[tex]\[ A = 20,000 \times (1 + 0.04)^3 \][/tex]
[tex]\[ A = 20,000 \times 1.04^3 \][/tex]
By solving this expression:
1. The base of our expression (the expression inside the parentheses) is \( 1.04 \).
2. The exponent (to which the base is raised) is \( 3 \).
Thus, the completed expression for the amount of money that Charlie must pay back after 3 years is:
[tex]\[ £ 20,000 \times 1.04^3 \][/tex]
Evaluating \( 1.04^3 \):
[tex]\[ 1.04^3 \approx 1.124864 \][/tex]
And calculating the final amount:
[tex]\[ A \approx 20,000 \times 1.124864 \][/tex]
[tex]\[ A \approx £ 22497.28 \][/tex]
Therefore, the amount of money that Charlie must pay back at the end of 3 years is approximately £22,497.28.
1. Principal (P): The initial amount of money borrowed. For this loan, \( P = £ 20,000 \).
2. Rate (r): The annual interest rate. In this case, \( r = 4\% \) per year. To use this rate in calculations, we convert it to a decimal: \( r = \frac{4}{100} = 0.04 \).
3. Time (t): The number of years the money is borrowed for. Here, \( t = 3 \) years.
4. Compounding Periods (n): Since the interest is compounded annually, \( n = 1 \).
The compound interest formula to calculate the amount (A) to be paid back is given by:
[tex]\[ A = P \times \left(1 + \frac{r}{n}\right)^{nt} \][/tex]
Substituting the values we have:
[tex]\[ A = 20,000 \times \left(1 + \frac{0.04}{1}\right)^{1 \times 3} \][/tex]
[tex]\[ A = 20,000 \times (1 + 0.04)^3 \][/tex]
[tex]\[ A = 20,000 \times 1.04^3 \][/tex]
By solving this expression:
1. The base of our expression (the expression inside the parentheses) is \( 1.04 \).
2. The exponent (to which the base is raised) is \( 3 \).
Thus, the completed expression for the amount of money that Charlie must pay back after 3 years is:
[tex]\[ £ 20,000 \times 1.04^3 \][/tex]
Evaluating \( 1.04^3 \):
[tex]\[ 1.04^3 \approx 1.124864 \][/tex]
And calculating the final amount:
[tex]\[ A \approx 20,000 \times 1.124864 \][/tex]
[tex]\[ A \approx £ 22497.28 \][/tex]
Therefore, the amount of money that Charlie must pay back at the end of 3 years is approximately £22,497.28.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.