Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the system of simultaneous equations given:
[tex]\[ \begin{cases} 2p - 3q = 4 \\ 3p + 2q = 19 \end{cases} \][/tex]
we will use the method of elimination to find the values of \( p \) and \( q \).
### Step 1: Eliminate one variable
First, let's eliminate \( q \). To do this, we need to make the coefficients of \( q \) in both equations equal. We'll do this by multiplying each equation by a number that will make the coefficients of \( q \) equal when added or subtracted.
For the first equation \( 2p - 3q = 4 \), multiply by 2:
[tex]\[ 4p - 6q = 8 \][/tex]
For the second equation \( 3p + 2q = 19 \), multiply by 3:
[tex]\[ 9p + 6q = 57 \][/tex]
Now we have the system:
[tex]\[ \begin{cases} 4p - 6q = 8 \\ 9p + 6q = 57 \end{cases} \][/tex]
### Step 2: Add or subtract the equations
Next, add the two equations to eliminate \( q \):
[tex]\[ (4p - 6q) + (9p + 6q) = 8 + 57 \][/tex]
[tex]\[ 4p + 9p = 65 \][/tex]
[tex]\[ 13p = 65 \][/tex]
### Step 3: Solve for \( p \)
Divide both sides by 13:
[tex]\[ p = \frac{65}{13} \][/tex]
[tex]\[ p = 5 \][/tex]
### Step 4: Substitute \( p \) back into one of the original equations to solve for \( q \)
We'll substitute \( p = 5 \) into the first equation \( 2p - 3q = 4 \):
[tex]\[ 2(5) - 3q = 4 \][/tex]
[tex]\[ 10 - 3q = 4 \][/tex]
Subtract 10 from both sides:
[tex]\[ -3q = 4 - 10 \][/tex]
[tex]\[ -3q = -6 \][/tex]
Divide both sides by -3:
[tex]\[ q = \frac{-6}{-3} \][/tex]
[tex]\[ q = 2 \][/tex]
### Solution
The solution to the system of equations is:
[tex]\[ (p, q) = (5, 2) \][/tex]
[tex]\[ \begin{cases} 2p - 3q = 4 \\ 3p + 2q = 19 \end{cases} \][/tex]
we will use the method of elimination to find the values of \( p \) and \( q \).
### Step 1: Eliminate one variable
First, let's eliminate \( q \). To do this, we need to make the coefficients of \( q \) in both equations equal. We'll do this by multiplying each equation by a number that will make the coefficients of \( q \) equal when added or subtracted.
For the first equation \( 2p - 3q = 4 \), multiply by 2:
[tex]\[ 4p - 6q = 8 \][/tex]
For the second equation \( 3p + 2q = 19 \), multiply by 3:
[tex]\[ 9p + 6q = 57 \][/tex]
Now we have the system:
[tex]\[ \begin{cases} 4p - 6q = 8 \\ 9p + 6q = 57 \end{cases} \][/tex]
### Step 2: Add or subtract the equations
Next, add the two equations to eliminate \( q \):
[tex]\[ (4p - 6q) + (9p + 6q) = 8 + 57 \][/tex]
[tex]\[ 4p + 9p = 65 \][/tex]
[tex]\[ 13p = 65 \][/tex]
### Step 3: Solve for \( p \)
Divide both sides by 13:
[tex]\[ p = \frac{65}{13} \][/tex]
[tex]\[ p = 5 \][/tex]
### Step 4: Substitute \( p \) back into one of the original equations to solve for \( q \)
We'll substitute \( p = 5 \) into the first equation \( 2p - 3q = 4 \):
[tex]\[ 2(5) - 3q = 4 \][/tex]
[tex]\[ 10 - 3q = 4 \][/tex]
Subtract 10 from both sides:
[tex]\[ -3q = 4 - 10 \][/tex]
[tex]\[ -3q = -6 \][/tex]
Divide both sides by -3:
[tex]\[ q = \frac{-6}{-3} \][/tex]
[tex]\[ q = 2 \][/tex]
### Solution
The solution to the system of equations is:
[tex]\[ (p, q) = (5, 2) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.