Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

CARDINAL OTUNGA HIGH MOSOCHO
Term Assignment

1. Simplify the expression. (3 marks)

2. Factorize: (2 marks)
[tex]\[ 4pqr^2 + 6p^2qr^2 - 2pq^2r^2 \][/tex]

3. Simplify the common factors. (3 marks)
[tex]\[ acx - 1 - x + 6a \][/tex]

4. Three tractors, each working eight hours a day, can plough a field in 5 days. How many days would two such tractors, working 10 hours a day, take to plough the same field? (3 marks)

5. Find the square roots of the following numbers using tables: (2 marks)
a) 9521695
b) 0.0456

6. Find the squares of the following numbers using tables: (2 marks)
a) 893.689
b) 40.43

7. Evans can consume \(86.8 \, L\) of water per week. Find his average consumption per day.

8. Evaluate: (3 marks)
[tex]\[
4 \frac{1}{3} - \left(5 \frac{1}{5} + \frac{4}{5} \text{ of } \frac{25}{3}\right)
\][/tex]
[tex]\[
8 \frac{26}{5} + \frac{4}{5} \text{ of } \frac{25}{2}
\][/tex]


Sagot :

Sure, let's go through each of the questions step by step:

### Question 1: Simplify the expression
Since the specific expression to simplify is missing, we can't provide the steps or the solution here. Please include the expression next time for a full solution.

### Question 2: Factorize \( 4 p q r^2 + 6 p^2 q r^2 - 2 p q^2 r^2 \)

To factorize \( 4 p q r^2 + 6 p^2 q r^2 - 2 p q^2 r^2 \):

1. Identify the common factors in each term:
- All terms have \( 2 p q r^2 \).

2. Factor out the common factor \( 2 p q r^2 \):

[tex]\[ 4 p q r^2 + 6 p^2 q r^2 - 2 p q^2 r^2 = 2 p q r^2(2 + 3 p - q) \][/tex]

So, the factorized form is:

[tex]\[ 2 p q r^2 (3 p - q + 2) \][/tex]

### Question 3: Simplify the common factors in \( acx - 1 - x + 6a \)

To simplify \( acx - 1 - x + 6a \):

1. Group the terms:

[tex]\[ acx - x + 6a - 1 \][/tex]

2. Factor out the common factor \( x \) from the first two terms:

[tex]\[ x(ac - 1) + 6a - 1 \][/tex]

So, the simplified form is:

[tex]\[ acx + 6a - x - 1 \][/tex]

### Question 4: Calculate the number of days required for two tractors working 10 hours a day

Given:
- Three tractors working 8 hours each can plough the field in 5 days:

1. Total work done by three tractors in one day:
[tex]\[ \text{Work in one day} = 3 \times 8 = 24 \text{ tractor-hours} \][/tex]

2. Total work required (in tractor-hours):
[tex]\[ \text{Total work} = 5 \times 24 = 120 \text{ tractor-hours} \][/tex]

3. Work done by two tractors working 10 hours a day:
[tex]\[ \text{Daily work by two tractors} = 2 \times 10 = 20 \text{ tractor-hours} \][/tex]

4. Number of days required by two tractors:
[tex]\[ \text{Days required} = \frac{120}{20} = 6 \text{ days} \][/tex]

So, the number of days required is \( 6 \) days.

### Question 5: Find the square roots using tables

a) Square root of 9521695:
[tex]\[ \sqrt{9521695} = 3085.7243882109756 \][/tex]

b) Square root of 0.0456:
[tex]\[ \sqrt{0.0456} = 0.21354156504062624 \][/tex]

### Question 6: Find the squares using tables

a) Square of 893.689:
[tex]\[ (893.689)^2 = 798680.028721 \][/tex]

b) Square of 40.43:
[tex]\[ (40.43)^2 = 1634.5849 \][/tex]

### Question 7: Evans' average water consumption per day

1. Total water consumed per week:
[tex]\[ \text{Water per week} = 86.8 \text{ L} \][/tex]

2. Number of days in a week: \(7 \)

3. Average consumption per day:
[tex]\[ \text{Average consumption} = \frac{86.8}{7} = 12.4 \text{ L/day} \][/tex]

Evans' average water consumption per day is \( 12.4 \text{ L/day} \).

### Question 8: Evaluate the BODMAS expression

Evaluate:
[tex]\[ 4 \frac{1}{3} - \left(5 \frac{1}{5} + \frac{4}{5} \times \frac{25}{3}\right) \times \left(8 \frac{26}{5} + \frac{4}{5} \times \frac{25}{2}\right) \][/tex]

Breaking it down:

1. Convert to improper fractions:

[tex]\[ 4 \frac{1}{3} = \frac{13}{3} \][/tex]

[tex]\[ 5 \frac{1}{5} = \frac{26}{5} \][/tex]

[tex]\[ 8 \frac{26}{5} = \frac{66}{5} \][/tex]

2. Evaluate the innermost expression:

[tex]\[ \frac{4}{5} \times \frac{25}{3} = \frac{100}{15} = \frac{20}{3} \][/tex]

[tex]\[ \frac{4}{5} \times \frac{25}{2} = \frac{100}{10} = 10 \][/tex]

3. Substitute back:

[tex]\[ \frac{13}{3} - \left(\frac{26}{5} + \frac{20}{3}\right) \times \left(\frac{66}{5} + 10\right) \][/tex]

4. Simplify the fractions inside the parentheses:

[tex]\[ \left(\frac{26}{5} + \frac{20}{3}\right) = \left(\frac{78}{15} + \frac{100}{15}\right) = \frac{178}{15} \][/tex]

[tex]\[ \left(\frac{66}{5} + 10\right) = \left(\frac{66}{5} + \frac{50}{5}\right) = \frac{116}{5} \][/tex]

5. Multiply the two main terms:

[tex]\[ \frac{178}{15} \times \frac{116}{5} = \frac{20648}{75} \][/tex]

6. Final subtraction:

[tex]\[ \frac{13}{3} - \frac{20648}{75} \][/tex]

After calculating, the final result is:

[tex]\[ -174.77333333333334 \][/tex]

This completes all the steps and solutions.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.