Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the least common denominator (LCD) of the given fractions:
[tex]\[ \frac{1}{45 x^3 y^6} \quad \text{and} \quad \frac{7}{30 x^5 y^4}, \][/tex]
we need to determine the least common multiple (LCM) of their denominators.
### Step-by-Step Solution
1. Identify the coefficients of the denominators:
- For the first fraction, the coefficient is 45.
- For the second fraction, the coefficient is 30.
2. Find the LCM of the coefficients 45 and 30:
- The factors of 45 are \(3^2 \times 5\).
- The factors of 30 are \(2 \times 3 \times 5\).
- The LCM is found by taking the highest power of each prime factor that appears in the factorizations:
- Factor of 2: \(2^1\)
- Factor of 3: \(3^2\)
- Factor of 5: \(5^1\)
- Thus, the LCM of 45 and 30 is \(2^1 \times 3^2 \times 5^1 = 90\).
3. Identify the exponents of the variables \(x\) and \(y\) in each denominator:
- For \(x\), in the first fraction it is \(x^3\), and in the second fraction it is \(x^5\).
- For \(y\), in the first fraction it is \(y^6\), and in the second fraction it is \(y^4\).
4. Determine the LCM of the variable parts:
- For \(x\), take the highest power appearing in the denominators, which is \(x^5\).
- For \(y\), take the highest power appearing in the denominators, which is \(y^6\).
5. Combine the results to form the LCD:
- The least common denominator is the product of the LCM of the coefficients and the highest powers of \(x\) and \(y\).
Therefore, the LCD is:
[tex]\[ 90 \cdot x^5 \cdot y^6 \][/tex]
Thus, the least common denominator (LCD) for the fractions \(\frac{1}{45 x^3 y^6}\) and \(\frac{7}{30 x^5 y^4}\) is:
[tex]\[ \boxed{90 \cdot x^5 \cdot y^6} \][/tex]
[tex]\[ \frac{1}{45 x^3 y^6} \quad \text{and} \quad \frac{7}{30 x^5 y^4}, \][/tex]
we need to determine the least common multiple (LCM) of their denominators.
### Step-by-Step Solution
1. Identify the coefficients of the denominators:
- For the first fraction, the coefficient is 45.
- For the second fraction, the coefficient is 30.
2. Find the LCM of the coefficients 45 and 30:
- The factors of 45 are \(3^2 \times 5\).
- The factors of 30 are \(2 \times 3 \times 5\).
- The LCM is found by taking the highest power of each prime factor that appears in the factorizations:
- Factor of 2: \(2^1\)
- Factor of 3: \(3^2\)
- Factor of 5: \(5^1\)
- Thus, the LCM of 45 and 30 is \(2^1 \times 3^2 \times 5^1 = 90\).
3. Identify the exponents of the variables \(x\) and \(y\) in each denominator:
- For \(x\), in the first fraction it is \(x^3\), and in the second fraction it is \(x^5\).
- For \(y\), in the first fraction it is \(y^6\), and in the second fraction it is \(y^4\).
4. Determine the LCM of the variable parts:
- For \(x\), take the highest power appearing in the denominators, which is \(x^5\).
- For \(y\), take the highest power appearing in the denominators, which is \(y^6\).
5. Combine the results to form the LCD:
- The least common denominator is the product of the LCM of the coefficients and the highest powers of \(x\) and \(y\).
Therefore, the LCD is:
[tex]\[ 90 \cdot x^5 \cdot y^6 \][/tex]
Thus, the least common denominator (LCD) for the fractions \(\frac{1}{45 x^3 y^6}\) and \(\frac{7}{30 x^5 y^4}\) is:
[tex]\[ \boxed{90 \cdot x^5 \cdot y^6} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.