Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Given the relationships that \( y \) is directly proportional to \( w^2 \) and \( x \) is inversely proportional to \( w \):
1. We start with the equations:
[tex]\[ y = k \cdot w^2 \][/tex]
and
[tex]\[ x = \frac{c}{w} \][/tex]
2. When \( w = 10 \), \( y = 5 \), and \( x = 0.4 \):
- Substitute these values into the first equation to find \( k \):
[tex]\[ 5 = k \cdot (10^2) \][/tex]
[tex]\[ 5 = k \cdot 100 \][/tex]
[tex]\[ k = \frac{5}{100} = 0.05 \][/tex]
- Substitute these values into the second equation to find \( c \):
[tex]\[ 0.4 = \frac{c}{10} \][/tex]
[tex]\[ c = 0.4 \times 10 = 4 \][/tex]
3. Our goal is to express \( y \) in terms of \( x \).
- From the equation \( x = \frac{c}{w} \), solve for \( w \):
[tex]\[ w = \frac{c}{x} \][/tex]
- Substitute \( w = \frac{c}{x} \) into the equation \( y = k \cdot w^2 \):
[tex]\[ y = k \cdot \left( \frac{c}{x} \right)^2 \][/tex]
[tex]\[ y = k \cdot \frac{c^2}{x^2} \][/tex]
4. Substitute the values of \( k \) and \( c \):
[tex]\[ y = 0.05 \cdot \frac{4^2}{x^2} \][/tex]
[tex]\[ y = 0.05 \cdot \frac{16}{x^2} \][/tex]
[tex]\[ y = \frac{0.8}{x^2} \][/tex]
So, the relationship between \( y \) and \( x \) in its simplest form is:
[tex]\[ y = \frac{0.8}{x^2} \][/tex]
1. We start with the equations:
[tex]\[ y = k \cdot w^2 \][/tex]
and
[tex]\[ x = \frac{c}{w} \][/tex]
2. When \( w = 10 \), \( y = 5 \), and \( x = 0.4 \):
- Substitute these values into the first equation to find \( k \):
[tex]\[ 5 = k \cdot (10^2) \][/tex]
[tex]\[ 5 = k \cdot 100 \][/tex]
[tex]\[ k = \frac{5}{100} = 0.05 \][/tex]
- Substitute these values into the second equation to find \( c \):
[tex]\[ 0.4 = \frac{c}{10} \][/tex]
[tex]\[ c = 0.4 \times 10 = 4 \][/tex]
3. Our goal is to express \( y \) in terms of \( x \).
- From the equation \( x = \frac{c}{w} \), solve for \( w \):
[tex]\[ w = \frac{c}{x} \][/tex]
- Substitute \( w = \frac{c}{x} \) into the equation \( y = k \cdot w^2 \):
[tex]\[ y = k \cdot \left( \frac{c}{x} \right)^2 \][/tex]
[tex]\[ y = k \cdot \frac{c^2}{x^2} \][/tex]
4. Substitute the values of \( k \) and \( c \):
[tex]\[ y = 0.05 \cdot \frac{4^2}{x^2} \][/tex]
[tex]\[ y = 0.05 \cdot \frac{16}{x^2} \][/tex]
[tex]\[ y = \frac{0.8}{x^2} \][/tex]
So, the relationship between \( y \) and \( x \) in its simplest form is:
[tex]\[ y = \frac{0.8}{x^2} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.