Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's prove that the sum of the interior angle measures of a triangle is \(180^\circ\) using the parallel lines \(y \parallel z\).
Given: \(y \parallel z\)
Prove: \(m \angle 5 + m \angle 2 + m \angle 0 = 180^\circ\)
### Proof:
1. Statements: \(y \parallel z\)
Reasons: Given
2. Statements: \(\angle 5 = \angle 1\)
Reasons: Alternate interior angles are congruent when two parallel lines are cut by a transversal.
3. Statements: \(\angle 6 = \angle 2\)
Reasons: Alternate interior angles are congruent when two parallel lines are cut by a transversal.
4. Statements: \(\angle 0\) is an exterior angle of the triangle.
Reasons: Definition of an exterior angle.
5. Statements: \(\angle 0 = \angle 1 + \angle 2\)
Reasons: The Exterior Angle Theorem states that the measure of an exterior angle of a triangle is equal to the sum of the measures of its two non-adjacent interior angles.
6. Statements: \(m \angle 5 + m \angle 2 + m \angle 0\)
Reasons: Summation of the angles as per the question.
7. Statements: Substitute \(\angle 5\) and \(\angle 0\):
[tex]\[ m \angle 5 + m \angle 2 + m \angle 0 = m \angle 1 + m \angle 2 + (m \angle 1 + m \angle 2) \][/tex]
Reasons: Because \(\angle 5 = \angle 1\) and \(\angle 0 = \angle 1 + \angle 2\).
8. Statements: Combine like terms:
[tex]\[ m \angle 1 + m \angle 2 + m \angle 1 + m \angle 2 = 2m \angle 1 + 2m \angle 2 \][/tex]
Reasons: Simplification
9. Statements: The sum of the interior angles in a triangle is always \(180^\circ\).
Reasons: Triangle Angle Sum Theorem
10. Statements: Therefore, \(2m \angle 1 + 2m \angle 2 = 180^\circ\).
Reasons: From the previous steps and the established fact that the sum of the interior angles of a triangle is \(180^\circ\).
Thus, we have proved that the sum of the interior angle measures of a triangle is \(180^\circ\).
\begin{tabular}{|c|l|}
\hline
\textbf{Statements} & \textbf{Reasons} \\
\hline
1. \(y \parallel z\) & 1. Given \\
2. \(\angle 5 = \angle 1\) & 2. Alternate interior angles are congruent. \\
3. \(\angle 6 = \angle 2\) & 3. Alternate interior angles are congruent. \\
4. \(\angle 0\) is an exterior angle. & 4. Definition of an exterior angle. \\
5. \(\angle 0 = \angle 1 + \angle 2\) & 5. Exterior Angle Theorem. \\
6. \(m \angle 5 + m \angle 2 + m \angle 0\) & 6. Summation of angles required. \\
7. \(m \angle 5 + m \angle 2 + m \angle 0 = \angle 1 + \angle 2 + (\angle 1 + \angle 2)\) & 7. Substitution with \(\angle 5 = \angle 1\) and \(\angle 0 = \angle 1 + \angle 2\). \\
8. \(2m \angle 1 + 2m \angle 2\) & 8. Combining like terms. \\
9. The sum of the angles in a triangle is \(180^\circ\). & 9. Triangle Angle Sum Theorem \\
10. \(2m \angle 1 + 2m \angle 2 = 180^\circ\). & 10. Conclusion from previous steps. \\
\hline
\end{tabular}
Hence, we have completed the proof.
Given: \(y \parallel z\)
Prove: \(m \angle 5 + m \angle 2 + m \angle 0 = 180^\circ\)
### Proof:
1. Statements: \(y \parallel z\)
Reasons: Given
2. Statements: \(\angle 5 = \angle 1\)
Reasons: Alternate interior angles are congruent when two parallel lines are cut by a transversal.
3. Statements: \(\angle 6 = \angle 2\)
Reasons: Alternate interior angles are congruent when two parallel lines are cut by a transversal.
4. Statements: \(\angle 0\) is an exterior angle of the triangle.
Reasons: Definition of an exterior angle.
5. Statements: \(\angle 0 = \angle 1 + \angle 2\)
Reasons: The Exterior Angle Theorem states that the measure of an exterior angle of a triangle is equal to the sum of the measures of its two non-adjacent interior angles.
6. Statements: \(m \angle 5 + m \angle 2 + m \angle 0\)
Reasons: Summation of the angles as per the question.
7. Statements: Substitute \(\angle 5\) and \(\angle 0\):
[tex]\[ m \angle 5 + m \angle 2 + m \angle 0 = m \angle 1 + m \angle 2 + (m \angle 1 + m \angle 2) \][/tex]
Reasons: Because \(\angle 5 = \angle 1\) and \(\angle 0 = \angle 1 + \angle 2\).
8. Statements: Combine like terms:
[tex]\[ m \angle 1 + m \angle 2 + m \angle 1 + m \angle 2 = 2m \angle 1 + 2m \angle 2 \][/tex]
Reasons: Simplification
9. Statements: The sum of the interior angles in a triangle is always \(180^\circ\).
Reasons: Triangle Angle Sum Theorem
10. Statements: Therefore, \(2m \angle 1 + 2m \angle 2 = 180^\circ\).
Reasons: From the previous steps and the established fact that the sum of the interior angles of a triangle is \(180^\circ\).
Thus, we have proved that the sum of the interior angle measures of a triangle is \(180^\circ\).
\begin{tabular}{|c|l|}
\hline
\textbf{Statements} & \textbf{Reasons} \\
\hline
1. \(y \parallel z\) & 1. Given \\
2. \(\angle 5 = \angle 1\) & 2. Alternate interior angles are congruent. \\
3. \(\angle 6 = \angle 2\) & 3. Alternate interior angles are congruent. \\
4. \(\angle 0\) is an exterior angle. & 4. Definition of an exterior angle. \\
5. \(\angle 0 = \angle 1 + \angle 2\) & 5. Exterior Angle Theorem. \\
6. \(m \angle 5 + m \angle 2 + m \angle 0\) & 6. Summation of angles required. \\
7. \(m \angle 5 + m \angle 2 + m \angle 0 = \angle 1 + \angle 2 + (\angle 1 + \angle 2)\) & 7. Substitution with \(\angle 5 = \angle 1\) and \(\angle 0 = \angle 1 + \angle 2\). \\
8. \(2m \angle 1 + 2m \angle 2\) & 8. Combining like terms. \\
9. The sum of the angles in a triangle is \(180^\circ\). & 9. Triangle Angle Sum Theorem \\
10. \(2m \angle 1 + 2m \angle 2 = 180^\circ\). & 10. Conclusion from previous steps. \\
\hline
\end{tabular}
Hence, we have completed the proof.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.