Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the direction in which the parabola defined by the equation \((y+3)^2 = -16(x-8)\) opens, we can follow these steps:
1. Identify the standard form of the parabola equation:
- The equation \((y+3)^2 = -16(x-8)\) is of the form \((y - k)^2 = 4p(x - h)\).
- Here, \((h, k)\) is the vertex of the parabola.
- The sign of \(4p\) determines the direction in which the parabola opens.
2. Compare the given equation to the standard form:
- Rewrite the given equation in a comparative form: \((y - (-3))^2 = -16(x - 8)\).
- This shows that \(h = 8\) and \(k = -3\), and \(4p = -16\).
3. Determine the value of \(p\):
- To find \(p\), we solve the equation \(4p = -16\):
[tex]\[ 4p = -16 \implies p = \frac{-16}{4} \implies p = -4 \][/tex]
4. Interpret the value of \(p\):
- If \(p\) is positive, the parabola opens to the right.
- If \(p\) is negative, the parabola opens to the left.
Since \(p\) is \(-4\), which is negative, the parabola opens to the left.
Answer: opens left
1. Identify the standard form of the parabola equation:
- The equation \((y+3)^2 = -16(x-8)\) is of the form \((y - k)^2 = 4p(x - h)\).
- Here, \((h, k)\) is the vertex of the parabola.
- The sign of \(4p\) determines the direction in which the parabola opens.
2. Compare the given equation to the standard form:
- Rewrite the given equation in a comparative form: \((y - (-3))^2 = -16(x - 8)\).
- This shows that \(h = 8\) and \(k = -3\), and \(4p = -16\).
3. Determine the value of \(p\):
- To find \(p\), we solve the equation \(4p = -16\):
[tex]\[ 4p = -16 \implies p = \frac{-16}{4} \implies p = -4 \][/tex]
4. Interpret the value of \(p\):
- If \(p\) is positive, the parabola opens to the right.
- If \(p\) is negative, the parabola opens to the left.
Since \(p\) is \(-4\), which is negative, the parabola opens to the left.
Answer: opens left
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.