Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's go through the problem step-by-step.
We are given the equation:
[tex]\[ \sec \theta + \cos \theta = \frac{5}{2} \][/tex]
Our goal is to find the value of \( \sec \theta - \cos \theta \).
First, let's isolate \( \sec \theta \) from the given equation:
[tex]\[ \sec \theta = \frac{5}{2} - \cos \theta \][/tex]
Now we will use this expression for \( \sec \theta \) to find \( \sec \theta - \cos \theta \):
[tex]\[ \sec \theta - \cos \theta = \left( \frac{5}{2} - \cos \theta \right) - \cos \theta \][/tex]
Simplify the expression on the right-hand side:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - \cos \theta - \cos \theta \][/tex]
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Therefore, the value of \( \sec \theta - \cos \theta \) is:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Hence, using the relation derived from the given condition, the expression simplifies to:
[tex]\[ \boxed{\frac{5}{2} - 2 \cos \theta} \][/tex]
We are given the equation:
[tex]\[ \sec \theta + \cos \theta = \frac{5}{2} \][/tex]
Our goal is to find the value of \( \sec \theta - \cos \theta \).
First, let's isolate \( \sec \theta \) from the given equation:
[tex]\[ \sec \theta = \frac{5}{2} - \cos \theta \][/tex]
Now we will use this expression for \( \sec \theta \) to find \( \sec \theta - \cos \theta \):
[tex]\[ \sec \theta - \cos \theta = \left( \frac{5}{2} - \cos \theta \right) - \cos \theta \][/tex]
Simplify the expression on the right-hand side:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - \cos \theta - \cos \theta \][/tex]
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Therefore, the value of \( \sec \theta - \cos \theta \) is:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Hence, using the relation derived from the given condition, the expression simplifies to:
[tex]\[ \boxed{\frac{5}{2} - 2 \cos \theta} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.