Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's go through the problem step-by-step.
We are given the equation:
[tex]\[ \sec \theta + \cos \theta = \frac{5}{2} \][/tex]
Our goal is to find the value of \( \sec \theta - \cos \theta \).
First, let's isolate \( \sec \theta \) from the given equation:
[tex]\[ \sec \theta = \frac{5}{2} - \cos \theta \][/tex]
Now we will use this expression for \( \sec \theta \) to find \( \sec \theta - \cos \theta \):
[tex]\[ \sec \theta - \cos \theta = \left( \frac{5}{2} - \cos \theta \right) - \cos \theta \][/tex]
Simplify the expression on the right-hand side:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - \cos \theta - \cos \theta \][/tex]
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Therefore, the value of \( \sec \theta - \cos \theta \) is:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Hence, using the relation derived from the given condition, the expression simplifies to:
[tex]\[ \boxed{\frac{5}{2} - 2 \cos \theta} \][/tex]
We are given the equation:
[tex]\[ \sec \theta + \cos \theta = \frac{5}{2} \][/tex]
Our goal is to find the value of \( \sec \theta - \cos \theta \).
First, let's isolate \( \sec \theta \) from the given equation:
[tex]\[ \sec \theta = \frac{5}{2} - \cos \theta \][/tex]
Now we will use this expression for \( \sec \theta \) to find \( \sec \theta - \cos \theta \):
[tex]\[ \sec \theta - \cos \theta = \left( \frac{5}{2} - \cos \theta \right) - \cos \theta \][/tex]
Simplify the expression on the right-hand side:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - \cos \theta - \cos \theta \][/tex]
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Therefore, the value of \( \sec \theta - \cos \theta \) is:
[tex]\[ \sec \theta - \cos \theta = \frac{5}{2} - 2 \cos \theta \][/tex]
Hence, using the relation derived from the given condition, the expression simplifies to:
[tex]\[ \boxed{\frac{5}{2} - 2 \cos \theta} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.