At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the 72nd term of the arithmetic sequence given by the terms 11, 7, 3,..., we follow these steps:
1. Identify the first term (a₁):
The first term of the sequence is \( a₁ = 11 \).
2. Determine the common difference (d):
The common difference \( d \) can be found by subtracting the first term from the second term:
[tex]\[ d = 7 - 11 = -4 \][/tex]
3. Use the formula for the nth term of an arithmetic sequence:
The nth term \( a_n \) of an arithmetic sequence can be calculated using the formula:
[tex]\[ a_n = a₁ + (n-1) \cdot d \][/tex]
Here, \( n = 72 \). Therefore, we need to substitute \( n = 72 \), \( a₁ = 11 \), and \( d = -4 \) into the formula.
4. Substitute the values and solve:
[tex]\[ a_{72} = 11 + (72 - 1) \cdot (-4) \][/tex]
Simplify within the parentheses:
[tex]\[ a_{72} = 11 + (71) \cdot (-4) \][/tex]
Multiply 71 by -4:
[tex]\[ a_{72} = 11 + (-284) \][/tex]
Add 11 to -284:
[tex]\[ a_{72} = 11 - 284 \][/tex]
This results in:
[tex]\[ a_{72} = -273 \][/tex]
So, the 72nd term of the arithmetic sequence is [tex]\(-273\)[/tex].
1. Identify the first term (a₁):
The first term of the sequence is \( a₁ = 11 \).
2. Determine the common difference (d):
The common difference \( d \) can be found by subtracting the first term from the second term:
[tex]\[ d = 7 - 11 = -4 \][/tex]
3. Use the formula for the nth term of an arithmetic sequence:
The nth term \( a_n \) of an arithmetic sequence can be calculated using the formula:
[tex]\[ a_n = a₁ + (n-1) \cdot d \][/tex]
Here, \( n = 72 \). Therefore, we need to substitute \( n = 72 \), \( a₁ = 11 \), and \( d = -4 \) into the formula.
4. Substitute the values and solve:
[tex]\[ a_{72} = 11 + (72 - 1) \cdot (-4) \][/tex]
Simplify within the parentheses:
[tex]\[ a_{72} = 11 + (71) \cdot (-4) \][/tex]
Multiply 71 by -4:
[tex]\[ a_{72} = 11 + (-284) \][/tex]
Add 11 to -284:
[tex]\[ a_{72} = 11 - 284 \][/tex]
This results in:
[tex]\[ a_{72} = -273 \][/tex]
So, the 72nd term of the arithmetic sequence is [tex]\(-273\)[/tex].
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.