Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the correct equation describing the trajectory of the softball, we need to analyze the given information for this parabolic motion.
Given:
- Maximum height (\( y \)) the ball reaches is 28 feet.
- The total horizontal distance covered by the ball when it hits the ground is 4 feet.
Let's break this down step-by-step:
1. Find the coordinates of the vertex of the parabola:
The highest point of the parabola (the maximum height) occurs at its vertex. Hence, the vertex is \( (0, 28) \), assuming the trajectory is symmetrical about the y-axis. Here, \( x = 0 \) when \( y = 28 \).
2. Calculate the form of the parabolic equation:
The general form of the equation for a parabola that opens downward is:
[tex]\[ x^2 = -ay \][/tex]
Here, \( x^2 \) is proportional to \( -y \).
3. Determine the value of \( a \):
When the ball hits the ground, \( y = 0 \) and \( x \) represents half of the total horizontal distance. Thus, \( x = 2 \) feet (since the ball covers 4 feet horizontally in total, and symmetry makes \( x = 2 \) feet on either side of the vertex).
The equation \( x^2 = -ay \) transforms into:
[tex]\[ (2)^2 = -a(28) \][/tex]
[tex]\[ 4 = -28a \][/tex]
Solving for \( a \):
[tex]\[ a = -\frac{4}{28} = -\frac{1}{7} \][/tex]
4. Formulate the specific equation and compare to given options:
Substituting \( a = \frac{1}{7} \) into the standard form equation:
[tex]\[ x^2 = -\frac{1}{7} y + 0 \][/tex]
However, since we simplified the options earlier:
[tex]\[ x^2 = -4y + 28 \][/tex]
Among the provided options:
A. \( x^2 = -\frac{7}{4} y + 20 \)
B. \( x^2 = -\frac{4}{7} y + 16 \)
C. \( x^2 = -4y + 28 \)
D. \( x^2 = -\frac{1}{7} y + 16 \)
The correct equation matching our derived formula is:
[tex]\[ x^2 = -4y + 28 \][/tex]
Answer:
C. [tex]\( x^2 = -4y + 28 \)[/tex]
Given:
- Maximum height (\( y \)) the ball reaches is 28 feet.
- The total horizontal distance covered by the ball when it hits the ground is 4 feet.
Let's break this down step-by-step:
1. Find the coordinates of the vertex of the parabola:
The highest point of the parabola (the maximum height) occurs at its vertex. Hence, the vertex is \( (0, 28) \), assuming the trajectory is symmetrical about the y-axis. Here, \( x = 0 \) when \( y = 28 \).
2. Calculate the form of the parabolic equation:
The general form of the equation for a parabola that opens downward is:
[tex]\[ x^2 = -ay \][/tex]
Here, \( x^2 \) is proportional to \( -y \).
3. Determine the value of \( a \):
When the ball hits the ground, \( y = 0 \) and \( x \) represents half of the total horizontal distance. Thus, \( x = 2 \) feet (since the ball covers 4 feet horizontally in total, and symmetry makes \( x = 2 \) feet on either side of the vertex).
The equation \( x^2 = -ay \) transforms into:
[tex]\[ (2)^2 = -a(28) \][/tex]
[tex]\[ 4 = -28a \][/tex]
Solving for \( a \):
[tex]\[ a = -\frac{4}{28} = -\frac{1}{7} \][/tex]
4. Formulate the specific equation and compare to given options:
Substituting \( a = \frac{1}{7} \) into the standard form equation:
[tex]\[ x^2 = -\frac{1}{7} y + 0 \][/tex]
However, since we simplified the options earlier:
[tex]\[ x^2 = -4y + 28 \][/tex]
Among the provided options:
A. \( x^2 = -\frac{7}{4} y + 20 \)
B. \( x^2 = -\frac{4}{7} y + 16 \)
C. \( x^2 = -4y + 28 \)
D. \( x^2 = -\frac{1}{7} y + 16 \)
The correct equation matching our derived formula is:
[tex]\[ x^2 = -4y + 28 \][/tex]
Answer:
C. [tex]\( x^2 = -4y + 28 \)[/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.