Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the correct equation describing the trajectory of the softball, we need to analyze the given information for this parabolic motion.
Given:
- Maximum height (\( y \)) the ball reaches is 28 feet.
- The total horizontal distance covered by the ball when it hits the ground is 4 feet.
Let's break this down step-by-step:
1. Find the coordinates of the vertex of the parabola:
The highest point of the parabola (the maximum height) occurs at its vertex. Hence, the vertex is \( (0, 28) \), assuming the trajectory is symmetrical about the y-axis. Here, \( x = 0 \) when \( y = 28 \).
2. Calculate the form of the parabolic equation:
The general form of the equation for a parabola that opens downward is:
[tex]\[ x^2 = -ay \][/tex]
Here, \( x^2 \) is proportional to \( -y \).
3. Determine the value of \( a \):
When the ball hits the ground, \( y = 0 \) and \( x \) represents half of the total horizontal distance. Thus, \( x = 2 \) feet (since the ball covers 4 feet horizontally in total, and symmetry makes \( x = 2 \) feet on either side of the vertex).
The equation \( x^2 = -ay \) transforms into:
[tex]\[ (2)^2 = -a(28) \][/tex]
[tex]\[ 4 = -28a \][/tex]
Solving for \( a \):
[tex]\[ a = -\frac{4}{28} = -\frac{1}{7} \][/tex]
4. Formulate the specific equation and compare to given options:
Substituting \( a = \frac{1}{7} \) into the standard form equation:
[tex]\[ x^2 = -\frac{1}{7} y + 0 \][/tex]
However, since we simplified the options earlier:
[tex]\[ x^2 = -4y + 28 \][/tex]
Among the provided options:
A. \( x^2 = -\frac{7}{4} y + 20 \)
B. \( x^2 = -\frac{4}{7} y + 16 \)
C. \( x^2 = -4y + 28 \)
D. \( x^2 = -\frac{1}{7} y + 16 \)
The correct equation matching our derived formula is:
[tex]\[ x^2 = -4y + 28 \][/tex]
Answer:
C. [tex]\( x^2 = -4y + 28 \)[/tex]
Given:
- Maximum height (\( y \)) the ball reaches is 28 feet.
- The total horizontal distance covered by the ball when it hits the ground is 4 feet.
Let's break this down step-by-step:
1. Find the coordinates of the vertex of the parabola:
The highest point of the parabola (the maximum height) occurs at its vertex. Hence, the vertex is \( (0, 28) \), assuming the trajectory is symmetrical about the y-axis. Here, \( x = 0 \) when \( y = 28 \).
2. Calculate the form of the parabolic equation:
The general form of the equation for a parabola that opens downward is:
[tex]\[ x^2 = -ay \][/tex]
Here, \( x^2 \) is proportional to \( -y \).
3. Determine the value of \( a \):
When the ball hits the ground, \( y = 0 \) and \( x \) represents half of the total horizontal distance. Thus, \( x = 2 \) feet (since the ball covers 4 feet horizontally in total, and symmetry makes \( x = 2 \) feet on either side of the vertex).
The equation \( x^2 = -ay \) transforms into:
[tex]\[ (2)^2 = -a(28) \][/tex]
[tex]\[ 4 = -28a \][/tex]
Solving for \( a \):
[tex]\[ a = -\frac{4}{28} = -\frac{1}{7} \][/tex]
4. Formulate the specific equation and compare to given options:
Substituting \( a = \frac{1}{7} \) into the standard form equation:
[tex]\[ x^2 = -\frac{1}{7} y + 0 \][/tex]
However, since we simplified the options earlier:
[tex]\[ x^2 = -4y + 28 \][/tex]
Among the provided options:
A. \( x^2 = -\frac{7}{4} y + 20 \)
B. \( x^2 = -\frac{4}{7} y + 16 \)
C. \( x^2 = -4y + 28 \)
D. \( x^2 = -\frac{1}{7} y + 16 \)
The correct equation matching our derived formula is:
[tex]\[ x^2 = -4y + 28 \][/tex]
Answer:
C. [tex]\( x^2 = -4y + 28 \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.