Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given parabolic equations have the directrix \(x = -4\), we need to use the following properties of a parabola in the form:
[tex]\[ x = \frac{1}{4a} y^2 + b y + c \][/tex]
The directrix for this parabola is given by:
[tex]\[ x = h - \frac{1}{4a} \][/tex]
where \( h \) is the x-coordinate of the vertex. Setting the directrix to \( x = -4 \), we get:
[tex]\[ -4 = h - \frac{1}{4a} \][/tex]
[tex]\[ h = -4 + \frac{1}{4a} \][/tex]
We will check each equation to see if their vertex \( h = -4 \).
1. Equation: \( x = \frac{y^2}{24} - \frac{7y}{12} + \frac{97}{24} \)
- Here, \( a = \frac{1}{24} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{24}} = 6\)
- Thus, \( h = -4 + 6 = 2 \neq -4 \)
2. Equation: \( x = -\frac{y^2}{16} + \frac{5y}{8} - \frac{153}{16} \)
- Here, \( a = -\frac{1}{16} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \left(-\frac{1}{16}\right)} = -4\)
- Thus, \( h = -4 + (-4) = -8 \neq -4 \)
3. Equation: \( x = -\frac{y^2}{12} + \frac{y}{2} - \frac{39}{4} \)
- Here, \( a = -\frac{1}{12} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \left(-\frac{1}{12}\right)} = -3\)
- Thus, \( h = -4 + (-3) = -7 \neq -4 \)
4. Equation: \( x = -\frac{y^2}{28} - \frac{5y}{7} - \frac{95}{7} \)
- Here, \( a = -\frac{1}{28} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \left(-\frac{1}{28}\right)} = -7\)
- Thus, \( h = -4 + (-7) = -11 \neq -4 \)
5. Equation: \( x = \frac{y^2}{48} + \frac{5y}{24} + \frac{58}{48} \)
- Here, \( a = \frac{1}{48} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{48}} = 12\)
- Thus, \( h = -4 + 12 = 8 \neq -4 \)
6. Equation: \( x = \frac{y^2}{32} + \frac{3y}{16} + \frac{137}{32} \)
- Here, \( a = \frac{1}{32} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{32}} = 8\)
- Thus, \( h = -4 + 8 = 4 \neq -4 \)
Therefore, none of the given equations have the directrix [tex]\(x = -4\)[/tex].
[tex]\[ x = \frac{1}{4a} y^2 + b y + c \][/tex]
The directrix for this parabola is given by:
[tex]\[ x = h - \frac{1}{4a} \][/tex]
where \( h \) is the x-coordinate of the vertex. Setting the directrix to \( x = -4 \), we get:
[tex]\[ -4 = h - \frac{1}{4a} \][/tex]
[tex]\[ h = -4 + \frac{1}{4a} \][/tex]
We will check each equation to see if their vertex \( h = -4 \).
1. Equation: \( x = \frac{y^2}{24} - \frac{7y}{12} + \frac{97}{24} \)
- Here, \( a = \frac{1}{24} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{24}} = 6\)
- Thus, \( h = -4 + 6 = 2 \neq -4 \)
2. Equation: \( x = -\frac{y^2}{16} + \frac{5y}{8} - \frac{153}{16} \)
- Here, \( a = -\frac{1}{16} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \left(-\frac{1}{16}\right)} = -4\)
- Thus, \( h = -4 + (-4) = -8 \neq -4 \)
3. Equation: \( x = -\frac{y^2}{12} + \frac{y}{2} - \frac{39}{4} \)
- Here, \( a = -\frac{1}{12} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \left(-\frac{1}{12}\right)} = -3\)
- Thus, \( h = -4 + (-3) = -7 \neq -4 \)
4. Equation: \( x = -\frac{y^2}{28} - \frac{5y}{7} - \frac{95}{7} \)
- Here, \( a = -\frac{1}{28} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \left(-\frac{1}{28}\right)} = -7\)
- Thus, \( h = -4 + (-7) = -11 \neq -4 \)
5. Equation: \( x = \frac{y^2}{48} + \frac{5y}{24} + \frac{58}{48} \)
- Here, \( a = \frac{1}{48} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{48}} = 12\)
- Thus, \( h = -4 + 12 = 8 \neq -4 \)
6. Equation: \( x = \frac{y^2}{32} + \frac{3y}{16} + \frac{137}{32} \)
- Here, \( a = \frac{1}{32} \)
- \(\frac{1}{4a} = \frac{1}{4 \cdot \frac{1}{32}} = 8\)
- Thus, \( h = -4 + 8 = 4 \neq -4 \)
Therefore, none of the given equations have the directrix [tex]\(x = -4\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.