Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's carefully analyze and solve the equation \(\frac{(x - c_1)^2}{2} + \frac{(y - c_2)^2}{2} = 1\).
Step-by-Step Solution:
1. Understanding the Ellipse Equation:
The given equation is of the form \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\), which represents the equation of an ellipse. Here \(a\) and \(b\) are the semi-major and semi-minor axes, respectively, and \((h, k)\) is the center of the ellipse.
2. Rewrite the Given Equation:
The given equation looks like:
[tex]\[ \frac{(x - c_1)^2}{2} + \frac{(y - c_2)^2}{2} = 1 \][/tex]
3. Substitute \(c_1\) and \(c_2\):
Notice that the given equation seems to have missing center coordinates \(c_1\) and \(c_2\). Suppose that the center is at the origin (i.e., \(c_1 = 0\) and \(c_2 = 0\)), giving us:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
4. Analyze the Simplified Form:
This is already in the form of an ellipse centered at the origin with semi-major and semi-minor axes both having length \(\sqrt{2}\):
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
5. Conclusion:
The equation \(\frac{x^2}{2} + \frac{y^2}{2} = 1\) correctly represents the ellipse centered at the origin where both \(a^2 = 2\) and \(b^2 = 2\).
Thus, the final step yields the result:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} - 1 = 0 \][/tex]
Hence, this is the ellipse's equation simplified:
[tex]\[ x^2/2 + y^2/2 - 1 = 0 \][/tex]
Step-by-Step Solution:
1. Understanding the Ellipse Equation:
The given equation is of the form \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\), which represents the equation of an ellipse. Here \(a\) and \(b\) are the semi-major and semi-minor axes, respectively, and \((h, k)\) is the center of the ellipse.
2. Rewrite the Given Equation:
The given equation looks like:
[tex]\[ \frac{(x - c_1)^2}{2} + \frac{(y - c_2)^2}{2} = 1 \][/tex]
3. Substitute \(c_1\) and \(c_2\):
Notice that the given equation seems to have missing center coordinates \(c_1\) and \(c_2\). Suppose that the center is at the origin (i.e., \(c_1 = 0\) and \(c_2 = 0\)), giving us:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
4. Analyze the Simplified Form:
This is already in the form of an ellipse centered at the origin with semi-major and semi-minor axes both having length \(\sqrt{2}\):
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
5. Conclusion:
The equation \(\frac{x^2}{2} + \frac{y^2}{2} = 1\) correctly represents the ellipse centered at the origin where both \(a^2 = 2\) and \(b^2 = 2\).
Thus, the final step yields the result:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} - 1 = 0 \][/tex]
Hence, this is the ellipse's equation simplified:
[tex]\[ x^2/2 + y^2/2 - 1 = 0 \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.