Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's carefully analyze and solve the equation \(\frac{(x - c_1)^2}{2} + \frac{(y - c_2)^2}{2} = 1\).
Step-by-Step Solution:
1. Understanding the Ellipse Equation:
The given equation is of the form \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\), which represents the equation of an ellipse. Here \(a\) and \(b\) are the semi-major and semi-minor axes, respectively, and \((h, k)\) is the center of the ellipse.
2. Rewrite the Given Equation:
The given equation looks like:
[tex]\[ \frac{(x - c_1)^2}{2} + \frac{(y - c_2)^2}{2} = 1 \][/tex]
3. Substitute \(c_1\) and \(c_2\):
Notice that the given equation seems to have missing center coordinates \(c_1\) and \(c_2\). Suppose that the center is at the origin (i.e., \(c_1 = 0\) and \(c_2 = 0\)), giving us:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
4. Analyze the Simplified Form:
This is already in the form of an ellipse centered at the origin with semi-major and semi-minor axes both having length \(\sqrt{2}\):
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
5. Conclusion:
The equation \(\frac{x^2}{2} + \frac{y^2}{2} = 1\) correctly represents the ellipse centered at the origin where both \(a^2 = 2\) and \(b^2 = 2\).
Thus, the final step yields the result:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} - 1 = 0 \][/tex]
Hence, this is the ellipse's equation simplified:
[tex]\[ x^2/2 + y^2/2 - 1 = 0 \][/tex]
Step-by-Step Solution:
1. Understanding the Ellipse Equation:
The given equation is of the form \(\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1\), which represents the equation of an ellipse. Here \(a\) and \(b\) are the semi-major and semi-minor axes, respectively, and \((h, k)\) is the center of the ellipse.
2. Rewrite the Given Equation:
The given equation looks like:
[tex]\[ \frac{(x - c_1)^2}{2} + \frac{(y - c_2)^2}{2} = 1 \][/tex]
3. Substitute \(c_1\) and \(c_2\):
Notice that the given equation seems to have missing center coordinates \(c_1\) and \(c_2\). Suppose that the center is at the origin (i.e., \(c_1 = 0\) and \(c_2 = 0\)), giving us:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
4. Analyze the Simplified Form:
This is already in the form of an ellipse centered at the origin with semi-major and semi-minor axes both having length \(\sqrt{2}\):
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} = 1 \][/tex]
5. Conclusion:
The equation \(\frac{x^2}{2} + \frac{y^2}{2} = 1\) correctly represents the ellipse centered at the origin where both \(a^2 = 2\) and \(b^2 = 2\).
Thus, the final step yields the result:
[tex]\[ \frac{x^2}{2} + \frac{y^2}{2} - 1 = 0 \][/tex]
Hence, this is the ellipse's equation simplified:
[tex]\[ x^2/2 + y^2/2 - 1 = 0 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.