Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
The function \( V(r) = \frac{4}{3} \pi r^3 \) is used to calculate the volume of a sphere, in this case, a basketball, based on its radius \( r \).
Let's break down the function step by step:
1. Formula Explanation:
- The formula \( V(r) = \frac{4}{3} \pi r^3 \) calculates the volume of a sphere.
- Here, \( r \) is the radius of the sphere (basketball), and \( \pi \) is a mathematical constant approximately equal to 3.14159.
2. Term Identification:
- \( V(r) \) represents the volume of the sphere as a function of its radius \( r \).
- The radius \( r \) is the distance from the center of the basketball to any point on its surface.
3. Variable Roles:
- In this function, \( r \) is the independent variable (input), and \( V(r) \) is the dependent variable (output).
- By substituting a specific value of \( r \) into the formula, we get the corresponding volume \( V(r) \).
4. Interpretation of \( V(r) \):
- \( V(r) \) is essentially saying "the volume of the basketball when the radius is \( r \)."
5. Answer Selection:
- Given the options, the correct interpretation of what \( V(r) \) represents is:
- The volume of the basketball when the radius is \( r \).
Hence, [tex]\( V(r) = \frac{4}{3} \pi r^3 \)[/tex] represents the volume of the basketball when the radius is [tex]\( r \)[/tex].
Let's break down the function step by step:
1. Formula Explanation:
- The formula \( V(r) = \frac{4}{3} \pi r^3 \) calculates the volume of a sphere.
- Here, \( r \) is the radius of the sphere (basketball), and \( \pi \) is a mathematical constant approximately equal to 3.14159.
2. Term Identification:
- \( V(r) \) represents the volume of the sphere as a function of its radius \( r \).
- The radius \( r \) is the distance from the center of the basketball to any point on its surface.
3. Variable Roles:
- In this function, \( r \) is the independent variable (input), and \( V(r) \) is the dependent variable (output).
- By substituting a specific value of \( r \) into the formula, we get the corresponding volume \( V(r) \).
4. Interpretation of \( V(r) \):
- \( V(r) \) is essentially saying "the volume of the basketball when the radius is \( r \)."
5. Answer Selection:
- Given the options, the correct interpretation of what \( V(r) \) represents is:
- The volume of the basketball when the radius is \( r \).
Hence, [tex]\( V(r) = \frac{4}{3} \pi r^3 \)[/tex] represents the volume of the basketball when the radius is [tex]\( r \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.