At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the Highest Common Factor (HCF) of the given algebraic expressions \( x^2 - 5x + 6 \) and \( x^2 - 9 \), follow these steps:
1. Factorize Each Expression:
- For \( x^2 - 5x + 6 \), we look for factors of 6 that add up to -5. Those factors are -2 and -3, so we can write:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
- For \( x^2 - 9 \), recognize that this is a difference of squares. We can write:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
2. Identify Common Factors:
- Both factorizations contain the factor \( x - 3 \):
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
3. Determine the HCF:
The common factor between the two factorizations is \( x - 3 \).
Therefore, the HCF of the expressions \( x^2 - 5x + 6 \) and \( x^2 - 9 \) is:
[tex]\[ x - 3 \][/tex]
1. Factorize Each Expression:
- For \( x^2 - 5x + 6 \), we look for factors of 6 that add up to -5. Those factors are -2 and -3, so we can write:
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
- For \( x^2 - 9 \), recognize that this is a difference of squares. We can write:
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
2. Identify Common Factors:
- Both factorizations contain the factor \( x - 3 \):
[tex]\[ x^2 - 5x + 6 = (x - 2)(x - 3) \][/tex]
[tex]\[ x^2 - 9 = (x - 3)(x + 3) \][/tex]
3. Determine the HCF:
The common factor between the two factorizations is \( x - 3 \).
Therefore, the HCF of the expressions \( x^2 - 5x + 6 \) and \( x^2 - 9 \) is:
[tex]\[ x - 3 \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.