Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's solve this step-by-step.
1. Understanding the Problem Statement:
- We know the car runs 16 kilometers using 1 litre of petrol.
- We're given that the car has \(2 \frac{3}{4}\) litres of petrol available.
2. Convert Mixed Fraction to Improper Fraction:
- The given petrol amount is \(2 \frac{3}{4}\) litres. To make calculations easier, we can convert this mixed fraction to an improper fraction or a decimal.
- \(2 \frac{3}{4}\) can be converted to a decimal as follows:
[tex]\[ 2 \frac{3}{4} = 2 + \frac{3}{4} = 2 + 0.75 = 2.75 \text{ litres} \][/tex]
3. Calculate the Total Distance:
- We know that 1 litre of petrol allows the car to travel 16 kilometers.
- To find out how many kilometers the car can travel with 2.75 litres, we multiply the distance per litre by the total litres available:
[tex]\[ \text{Distance} = \text{Distance per litre} \times \text{Litres available} \][/tex]
[tex]\[ \text{Distance} = 16 \text{ km/litre} \times 2.75 \text{ litres} \][/tex]
4. Perform the Multiplication:
- Now, multiply 16 km/litre by 2.75 litres:
[tex]\[ 16 \times 2.75 = 16 \times \left(2 + 0.75\right) = 16 \times 2 + 16 \times 0.75 \][/tex]
[tex]\[ 16 \times 2 = 32 \][/tex]
[tex]\[ 16 \times 0.75 = 12 \][/tex]
[tex]\[ 32 + 12 = 44 \][/tex]
5. Conclusion:
- Therefore, the car will cover a distance of 44 kilometers using \(2 \frac{3}{4}\) litres of petrol.
So, the car will cover [tex]\(44 \text{ km}\)[/tex].
1. Understanding the Problem Statement:
- We know the car runs 16 kilometers using 1 litre of petrol.
- We're given that the car has \(2 \frac{3}{4}\) litres of petrol available.
2. Convert Mixed Fraction to Improper Fraction:
- The given petrol amount is \(2 \frac{3}{4}\) litres. To make calculations easier, we can convert this mixed fraction to an improper fraction or a decimal.
- \(2 \frac{3}{4}\) can be converted to a decimal as follows:
[tex]\[ 2 \frac{3}{4} = 2 + \frac{3}{4} = 2 + 0.75 = 2.75 \text{ litres} \][/tex]
3. Calculate the Total Distance:
- We know that 1 litre of petrol allows the car to travel 16 kilometers.
- To find out how many kilometers the car can travel with 2.75 litres, we multiply the distance per litre by the total litres available:
[tex]\[ \text{Distance} = \text{Distance per litre} \times \text{Litres available} \][/tex]
[tex]\[ \text{Distance} = 16 \text{ km/litre} \times 2.75 \text{ litres} \][/tex]
4. Perform the Multiplication:
- Now, multiply 16 km/litre by 2.75 litres:
[tex]\[ 16 \times 2.75 = 16 \times \left(2 + 0.75\right) = 16 \times 2 + 16 \times 0.75 \][/tex]
[tex]\[ 16 \times 2 = 32 \][/tex]
[tex]\[ 16 \times 0.75 = 12 \][/tex]
[tex]\[ 32 + 12 = 44 \][/tex]
5. Conclusion:
- Therefore, the car will cover a distance of 44 kilometers using \(2 \frac{3}{4}\) litres of petrol.
So, the car will cover [tex]\(44 \text{ km}\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.