Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Write a power series for the function:

[tex]\[ f(x) = \sqrt{16 - x^2} \][/tex]

[tex]\[ g(x) = (16 - x)^7 \text{ about } x = 0 \][/tex]

[tex]\[ f(x) = \sqrt{2 + x} \text{ about } x = 1 \][/tex]

Determine the convergence:

[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \][/tex]

Sagot :

Certainly! Let's break down the problems one by one.

### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)

To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).

[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]

Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:

[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]

where

[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]

Substituting \( u = \frac{x^2}{16} \):

[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]

Simplifying the coefficients,

[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]

This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).

### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)

For \( g(x) = (16 - x)^7 \), we again use the binomial series:

[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]

Expanding using the binomial theorem,

[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]

Then,

[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]

Simplifying,

[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]

This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).

### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)

To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:

[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]

Expanding around \( x = 1 \),

[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]

Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):

[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]

[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]

This yields,

[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]

This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).

### 4. Convergence of the Series

[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]

To determine the convergence, consider the general term:

[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]

Apply the Ratio Test:

[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]

Simplify the ratio inside the limit,

[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]

For the series to converge,

[tex]\[ 4|x-1| < 1 \][/tex]

[tex]\[ |x-1| < \frac{1}{4} \][/tex]

Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).

Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].