Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's break down the problems one by one.
### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)
To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]
Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:
[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]
where
[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]
Substituting \( u = \frac{x^2}{16} \):
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]
Simplifying the coefficients,
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]
This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).
### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)
For \( g(x) = (16 - x)^7 \), we again use the binomial series:
[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]
Expanding using the binomial theorem,
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Then,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Simplifying,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).
### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)
To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:
[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]
Expanding around \( x = 1 \),
[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]
Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):
[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]
[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This yields,
[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).
### 4. Convergence of the Series
[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
To determine the convergence, consider the general term:
[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
Apply the Ratio Test:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]
Simplify the ratio inside the limit,
[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]
For the series to converge,
[tex]\[ 4|x-1| < 1 \][/tex]
[tex]\[ |x-1| < \frac{1}{4} \][/tex]
Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).
Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].
### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)
To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]
Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:
[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]
where
[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]
Substituting \( u = \frac{x^2}{16} \):
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]
Simplifying the coefficients,
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]
This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).
### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)
For \( g(x) = (16 - x)^7 \), we again use the binomial series:
[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]
Expanding using the binomial theorem,
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Then,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Simplifying,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).
### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)
To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:
[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]
Expanding around \( x = 1 \),
[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]
Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):
[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]
[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This yields,
[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).
### 4. Convergence of the Series
[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
To determine the convergence, consider the general term:
[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
Apply the Ratio Test:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]
Simplify the ratio inside the limit,
[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]
For the series to converge,
[tex]\[ 4|x-1| < 1 \][/tex]
[tex]\[ |x-1| < \frac{1}{4} \][/tex]
Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).
Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.