Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's break down the problems one by one.
### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)
To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]
Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:
[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]
where
[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]
Substituting \( u = \frac{x^2}{16} \):
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]
Simplifying the coefficients,
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]
This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).
### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)
For \( g(x) = (16 - x)^7 \), we again use the binomial series:
[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]
Expanding using the binomial theorem,
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Then,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Simplifying,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).
### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)
To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:
[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]
Expanding around \( x = 1 \),
[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]
Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):
[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]
[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This yields,
[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).
### 4. Convergence of the Series
[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
To determine the convergence, consider the general term:
[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
Apply the Ratio Test:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]
Simplify the ratio inside the limit,
[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]
For the series to converge,
[tex]\[ 4|x-1| < 1 \][/tex]
[tex]\[ |x-1| < \frac{1}{4} \][/tex]
Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).
Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].
### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)
To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]
Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:
[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]
where
[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]
Substituting \( u = \frac{x^2}{16} \):
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]
Simplifying the coefficients,
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]
This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).
### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)
For \( g(x) = (16 - x)^7 \), we again use the binomial series:
[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]
Expanding using the binomial theorem,
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Then,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Simplifying,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).
### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)
To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:
[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]
Expanding around \( x = 1 \),
[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]
Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):
[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]
[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This yields,
[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).
### 4. Convergence of the Series
[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
To determine the convergence, consider the general term:
[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
Apply the Ratio Test:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]
Simplify the ratio inside the limit,
[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]
For the series to converge,
[tex]\[ 4|x-1| < 1 \][/tex]
[tex]\[ |x-1| < \frac{1}{4} \][/tex]
Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).
Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.