Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's break down the problems one by one.
### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)
To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]
Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:
[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]
where
[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]
Substituting \( u = \frac{x^2}{16} \):
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]
Simplifying the coefficients,
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]
This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).
### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)
For \( g(x) = (16 - x)^7 \), we again use the binomial series:
[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]
Expanding using the binomial theorem,
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Then,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Simplifying,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).
### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)
To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:
[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]
Expanding around \( x = 1 \),
[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]
Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):
[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]
[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This yields,
[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).
### 4. Convergence of the Series
[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
To determine the convergence, consider the general term:
[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
Apply the Ratio Test:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]
Simplify the ratio inside the limit,
[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]
For the series to converge,
[tex]\[ 4|x-1| < 1 \][/tex]
[tex]\[ |x-1| < \frac{1}{4} \][/tex]
Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).
Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].
### 1. Power Series for \( f(x) = \sqrt{16 - x^2} \)
#### About \( x = 0 \)
To find the power series representation of \( f(x) \) about \( x = 0 \), we use the binomial series expansion for a function of the form \( (1 - u)^{\frac{1}{2}} \), where \( u = \frac{x^2}{16} \).
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \frac{x^2}{16}} \][/tex]
Using the binomial series for \( (1 - u)^{\frac{1}{2}} \), we have:
[tex]\[ (1 - u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} u^n \][/tex]
where
[tex]\[ \binom{\frac{1}{2}}{n} = \frac{\left( \frac{1}{2} \right) \left( \frac{1}{2} - 1 \right) \left( \frac{1}{2} - 2 \right) \cdots \left( \frac{1}{2} - (n-1)\right)}{n!} \][/tex]
Substituting \( u = \frac{x^2}{16} \):
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \left(\frac{x^2}{16} \right)^n \][/tex]
Simplifying the coefficients,
[tex]\[ f(x) = 4 \sum_{n=0}^{\infty} (-1)^n \binom{\frac{1}{2}}{n} \frac{x^{2n}}{16^n} \][/tex]
This is the power series for \( f(x) = \sqrt{16 - x^2} \) about \( x = 0 \).
### 2. Power Series for \( g(x) = (16 - x)^7 \)
#### About \( x = 0 \)
For \( g(x) = (16 - x)^7 \), we again use the binomial series:
[tex]\[ (16 - x)^7 = 16^7 \left( 1 - \frac{x}{16} \right)^7 \][/tex]
Expanding using the binomial theorem,
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Then,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \left( \frac{x}{16} \right)^n \][/tex]
Simplifying,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n \frac{x^n}{16^n} = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
This is the power series for \( g(x) = (16 - x)^7 \) about \( x = 0 \).
### 3. Power Series for \( f(x) = \sqrt{2 + x} \)
#### About \( x = 1 \)
To find the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \), we write \( f(x) \) in the form of a binomial expansion:
[tex]\[ f(x) = \sqrt{2 + x} = \sqrt{3 - 1 + (x-1)} = \sqrt{3 + (x-1)} \][/tex]
Expanding around \( x = 1 \),
[tex]\[ f(x) = \sqrt{3} \sqrt{1 + \frac{x-1}{3}} \][/tex]
Using the binomial series for \( (1 + u)^{\frac{1}{2}} \):
[tex]\[ (1 + u)^{\frac{1}{2}} = \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} u^n \][/tex]
[tex]\[ \sqrt{3} \left(1 + \frac{x-1}{3} \right)^{\frac{1}{2}} = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This yields,
[tex]\[ f(x) = \sqrt{3} \sum_{n=0}^{\infty} \binom{\frac{1}{2}}{n} \left(\frac{x-1}{3}\right)^n \][/tex]
This is the power series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \).
### 4. Convergence of the Series
[tex]\[ \sum_{n=0}^{\infty} \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
To determine the convergence, consider the general term:
[tex]\[ a_n = \frac{4^{n+1} (x-1)^n}{n^3 + 2n + 1} \][/tex]
Apply the Ratio Test:
[tex]\[ \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{4^{n+2} (x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1} \cdot \frac{n^3 + 2n + 1}{4^{n+1} (x-1)^n} \right| \][/tex]
Simplify the ratio inside the limit,
[tex]\[ = \lim_{n \to \infty} \left| 4 \cdot (x-1) \cdot \frac{n^3 + 2n + 1}{(n+1)^3 + 2(n+1) + 1} \right| = 4|x-1| \lim_{n \to \infty} \frac{n^3 + 2n + 1}{n^3(1 + \frac{3}{n} + \frac{3}{n^2} + \frac{1}{n^3})} = 4|x-1| \cdot 1 = 4|x-1| \][/tex]
For the series to converge,
[tex]\[ 4|x-1| < 1 \][/tex]
[tex]\[ |x-1| < \frac{1}{4} \][/tex]
Hence, the radius of convergence is \( \frac{1}{4} \). The interval of convergence is \( \left(1 - \frac{1}{4}, 1 + \frac{1}{4}\right) = (0.75, 1.25) \).
Thus, the series converges for [tex]\( x \)[/tex] in the interval [tex]\( (0.75, 1.25) \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.