Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's address each of the problems one by one:
1. Power Series for \( f(x) = \sqrt{16 - x^2} \):
To find a power series for \( f(x) = \sqrt{16 - x^2} \) around \( x = 0 \), we can use the Taylor series expansion. This is generally cumbersome because \( f(x) \) isn’t expressed in a typical series-friendly form. However, there’s a known expansion for the square root function:
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \left(\frac{x}{4}\right)^2} \][/tex]
Expanding \( \sqrt{1 - u} \) using the binomial series, where \( u = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - u} \approx 1 - \frac{u}{2} - \frac{u^2}{8} - \frac{u^3}{16} - \cdots \][/tex]
Substitute \( u = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - \frac{x^2}{16}} \approx 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \][/tex]
Therefore,
[tex]\[ \sqrt{16 - x^2} = 4 \left( 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \right) \][/tex]
[tex]\[ = 4 - \frac{x^2}{8} - \frac{x^4}{128} - \frac{x^6}{2048} - \cdots \][/tex]
2. Power Series for \( g(x) = (16 - x)^7 \) about \( x = 0 \):
For \( g(x) = (16 - x)^7 \), we can substitute \( u = x/16 \):
[tex]\[ g(x) = (16(1 - \frac{x}{16}))^7 = 16^7 (1 - \frac{x}{16})^7 \][/tex]
Expanding \( (1 - \frac{x}{16})^7 \) using the binomial theorem:
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
Thus,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
[tex]\[ = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
3. Power Series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \):
We use \( u = x - 1 \), so \( f(x) = \sqrt{2 + u + 1} = \sqrt{3 + u} \):
Expanding \( \sqrt{3 + u} \):
[tex]\[ \sqrt{3 + u} = \sqrt{3} \left( 1 + \frac{u}{3} \right)^{1/2} \][/tex]
Using the binomial expansion for \( \left(1 + \frac{u}{3}\right)^{1/2} \):
[tex]\[ \sqrt{3} \left(1 + \frac{u}{3}\right)^{1/2} \approx \sqrt{3} \left( 1 + \frac{u}{6} - \frac{u^2}{72} + \cdots \right) \][/tex]
Substituting \( u = x - 1 \):
[tex]\[ f(x) = \sqrt{3 + (x-1)} \approx \sqrt{3} \left(1 + \frac{x-1}{6} - \frac{(x-1)^2}{72} + \cdots \right) \][/tex]
4. Convergence of \( \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \):
To determine convergence, you can use the ratio test:
Consider the term \( a_n = \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \).
The ratio \(\frac{a_{n+1}}{a_n} \):
[tex]\[ \frac{\frac{4^{n+2}(x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1}}{\frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1}} = 4(x-1) \cdot \frac{4}{\frac{(n+1)^3 + 2(n+1) + 1}{n^3 + 2n + 1}} \][/tex]
Generally, the ratio would simplify to \( 4(x-1) \):
[tex]\[ 4|x-1| < 1 \implies |x-1| < \frac{1}{4} \][/tex]
Thus, the series converges for \( x \) in the interval \( 1 - \frac{1}{4} < x < 1 + \frac{1}{4} \), or \( \frac{3}{4} < x < \frac{5}{4} \).
5. Power Series for \( \int \frac{\cos (x) - 1}{x} dx \):
Start with the Maclaurin series for \( \cos(x) \):
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Then,
[tex]\[ \cos(x) - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Dividing by \( x \):
[tex]\[ \frac{\cos(x) - 1}{x} = -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \][/tex]
Integrating term by term:
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \cdots + C \][/tex]
[tex]\[ = -\frac{x^2}{4} + \frac{x^4}{96} - \frac{x^6}{4320} + \cdots + C \][/tex]
So,
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(2n)!} + C \][/tex]
This completes the power series manipulations and the given problems.
1. Power Series for \( f(x) = \sqrt{16 - x^2} \):
To find a power series for \( f(x) = \sqrt{16 - x^2} \) around \( x = 0 \), we can use the Taylor series expansion. This is generally cumbersome because \( f(x) \) isn’t expressed in a typical series-friendly form. However, there’s a known expansion for the square root function:
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \left(\frac{x}{4}\right)^2} \][/tex]
Expanding \( \sqrt{1 - u} \) using the binomial series, where \( u = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - u} \approx 1 - \frac{u}{2} - \frac{u^2}{8} - \frac{u^3}{16} - \cdots \][/tex]
Substitute \( u = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - \frac{x^2}{16}} \approx 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \][/tex]
Therefore,
[tex]\[ \sqrt{16 - x^2} = 4 \left( 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \right) \][/tex]
[tex]\[ = 4 - \frac{x^2}{8} - \frac{x^4}{128} - \frac{x^6}{2048} - \cdots \][/tex]
2. Power Series for \( g(x) = (16 - x)^7 \) about \( x = 0 \):
For \( g(x) = (16 - x)^7 \), we can substitute \( u = x/16 \):
[tex]\[ g(x) = (16(1 - \frac{x}{16}))^7 = 16^7 (1 - \frac{x}{16})^7 \][/tex]
Expanding \( (1 - \frac{x}{16})^7 \) using the binomial theorem:
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
Thus,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
[tex]\[ = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
3. Power Series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \):
We use \( u = x - 1 \), so \( f(x) = \sqrt{2 + u + 1} = \sqrt{3 + u} \):
Expanding \( \sqrt{3 + u} \):
[tex]\[ \sqrt{3 + u} = \sqrt{3} \left( 1 + \frac{u}{3} \right)^{1/2} \][/tex]
Using the binomial expansion for \( \left(1 + \frac{u}{3}\right)^{1/2} \):
[tex]\[ \sqrt{3} \left(1 + \frac{u}{3}\right)^{1/2} \approx \sqrt{3} \left( 1 + \frac{u}{6} - \frac{u^2}{72} + \cdots \right) \][/tex]
Substituting \( u = x - 1 \):
[tex]\[ f(x) = \sqrt{3 + (x-1)} \approx \sqrt{3} \left(1 + \frac{x-1}{6} - \frac{(x-1)^2}{72} + \cdots \right) \][/tex]
4. Convergence of \( \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \):
To determine convergence, you can use the ratio test:
Consider the term \( a_n = \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \).
The ratio \(\frac{a_{n+1}}{a_n} \):
[tex]\[ \frac{\frac{4^{n+2}(x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1}}{\frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1}} = 4(x-1) \cdot \frac{4}{\frac{(n+1)^3 + 2(n+1) + 1}{n^3 + 2n + 1}} \][/tex]
Generally, the ratio would simplify to \( 4(x-1) \):
[tex]\[ 4|x-1| < 1 \implies |x-1| < \frac{1}{4} \][/tex]
Thus, the series converges for \( x \) in the interval \( 1 - \frac{1}{4} < x < 1 + \frac{1}{4} \), or \( \frac{3}{4} < x < \frac{5}{4} \).
5. Power Series for \( \int \frac{\cos (x) - 1}{x} dx \):
Start with the Maclaurin series for \( \cos(x) \):
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Then,
[tex]\[ \cos(x) - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Dividing by \( x \):
[tex]\[ \frac{\cos(x) - 1}{x} = -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \][/tex]
Integrating term by term:
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \cdots + C \][/tex]
[tex]\[ = -\frac{x^2}{4} + \frac{x^4}{96} - \frac{x^6}{4320} + \cdots + C \][/tex]
So,
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(2n)!} + C \][/tex]
This completes the power series manipulations and the given problems.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.