Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's address each of the problems one by one:
1. Power Series for \( f(x) = \sqrt{16 - x^2} \):
To find a power series for \( f(x) = \sqrt{16 - x^2} \) around \( x = 0 \), we can use the Taylor series expansion. This is generally cumbersome because \( f(x) \) isn’t expressed in a typical series-friendly form. However, there’s a known expansion for the square root function:
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \left(\frac{x}{4}\right)^2} \][/tex]
Expanding \( \sqrt{1 - u} \) using the binomial series, where \( u = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - u} \approx 1 - \frac{u}{2} - \frac{u^2}{8} - \frac{u^3}{16} - \cdots \][/tex]
Substitute \( u = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - \frac{x^2}{16}} \approx 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \][/tex]
Therefore,
[tex]\[ \sqrt{16 - x^2} = 4 \left( 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \right) \][/tex]
[tex]\[ = 4 - \frac{x^2}{8} - \frac{x^4}{128} - \frac{x^6}{2048} - \cdots \][/tex]
2. Power Series for \( g(x) = (16 - x)^7 \) about \( x = 0 \):
For \( g(x) = (16 - x)^7 \), we can substitute \( u = x/16 \):
[tex]\[ g(x) = (16(1 - \frac{x}{16}))^7 = 16^7 (1 - \frac{x}{16})^7 \][/tex]
Expanding \( (1 - \frac{x}{16})^7 \) using the binomial theorem:
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
Thus,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
[tex]\[ = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
3. Power Series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \):
We use \( u = x - 1 \), so \( f(x) = \sqrt{2 + u + 1} = \sqrt{3 + u} \):
Expanding \( \sqrt{3 + u} \):
[tex]\[ \sqrt{3 + u} = \sqrt{3} \left( 1 + \frac{u}{3} \right)^{1/2} \][/tex]
Using the binomial expansion for \( \left(1 + \frac{u}{3}\right)^{1/2} \):
[tex]\[ \sqrt{3} \left(1 + \frac{u}{3}\right)^{1/2} \approx \sqrt{3} \left( 1 + \frac{u}{6} - \frac{u^2}{72} + \cdots \right) \][/tex]
Substituting \( u = x - 1 \):
[tex]\[ f(x) = \sqrt{3 + (x-1)} \approx \sqrt{3} \left(1 + \frac{x-1}{6} - \frac{(x-1)^2}{72} + \cdots \right) \][/tex]
4. Convergence of \( \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \):
To determine convergence, you can use the ratio test:
Consider the term \( a_n = \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \).
The ratio \(\frac{a_{n+1}}{a_n} \):
[tex]\[ \frac{\frac{4^{n+2}(x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1}}{\frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1}} = 4(x-1) \cdot \frac{4}{\frac{(n+1)^3 + 2(n+1) + 1}{n^3 + 2n + 1}} \][/tex]
Generally, the ratio would simplify to \( 4(x-1) \):
[tex]\[ 4|x-1| < 1 \implies |x-1| < \frac{1}{4} \][/tex]
Thus, the series converges for \( x \) in the interval \( 1 - \frac{1}{4} < x < 1 + \frac{1}{4} \), or \( \frac{3}{4} < x < \frac{5}{4} \).
5. Power Series for \( \int \frac{\cos (x) - 1}{x} dx \):
Start with the Maclaurin series for \( \cos(x) \):
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Then,
[tex]\[ \cos(x) - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Dividing by \( x \):
[tex]\[ \frac{\cos(x) - 1}{x} = -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \][/tex]
Integrating term by term:
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \cdots + C \][/tex]
[tex]\[ = -\frac{x^2}{4} + \frac{x^4}{96} - \frac{x^6}{4320} + \cdots + C \][/tex]
So,
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(2n)!} + C \][/tex]
This completes the power series manipulations and the given problems.
1. Power Series for \( f(x) = \sqrt{16 - x^2} \):
To find a power series for \( f(x) = \sqrt{16 - x^2} \) around \( x = 0 \), we can use the Taylor series expansion. This is generally cumbersome because \( f(x) \) isn’t expressed in a typical series-friendly form. However, there’s a known expansion for the square root function:
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \left(\frac{x}{4}\right)^2} \][/tex]
Expanding \( \sqrt{1 - u} \) using the binomial series, where \( u = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - u} \approx 1 - \frac{u}{2} - \frac{u^2}{8} - \frac{u^3}{16} - \cdots \][/tex]
Substitute \( u = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - \frac{x^2}{16}} \approx 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \][/tex]
Therefore,
[tex]\[ \sqrt{16 - x^2} = 4 \left( 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \right) \][/tex]
[tex]\[ = 4 - \frac{x^2}{8} - \frac{x^4}{128} - \frac{x^6}{2048} - \cdots \][/tex]
2. Power Series for \( g(x) = (16 - x)^7 \) about \( x = 0 \):
For \( g(x) = (16 - x)^7 \), we can substitute \( u = x/16 \):
[tex]\[ g(x) = (16(1 - \frac{x}{16}))^7 = 16^7 (1 - \frac{x}{16})^7 \][/tex]
Expanding \( (1 - \frac{x}{16})^7 \) using the binomial theorem:
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
Thus,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
[tex]\[ = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
3. Power Series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \):
We use \( u = x - 1 \), so \( f(x) = \sqrt{2 + u + 1} = \sqrt{3 + u} \):
Expanding \( \sqrt{3 + u} \):
[tex]\[ \sqrt{3 + u} = \sqrt{3} \left( 1 + \frac{u}{3} \right)^{1/2} \][/tex]
Using the binomial expansion for \( \left(1 + \frac{u}{3}\right)^{1/2} \):
[tex]\[ \sqrt{3} \left(1 + \frac{u}{3}\right)^{1/2} \approx \sqrt{3} \left( 1 + \frac{u}{6} - \frac{u^2}{72} + \cdots \right) \][/tex]
Substituting \( u = x - 1 \):
[tex]\[ f(x) = \sqrt{3 + (x-1)} \approx \sqrt{3} \left(1 + \frac{x-1}{6} - \frac{(x-1)^2}{72} + \cdots \right) \][/tex]
4. Convergence of \( \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \):
To determine convergence, you can use the ratio test:
Consider the term \( a_n = \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \).
The ratio \(\frac{a_{n+1}}{a_n} \):
[tex]\[ \frac{\frac{4^{n+2}(x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1}}{\frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1}} = 4(x-1) \cdot \frac{4}{\frac{(n+1)^3 + 2(n+1) + 1}{n^3 + 2n + 1}} \][/tex]
Generally, the ratio would simplify to \( 4(x-1) \):
[tex]\[ 4|x-1| < 1 \implies |x-1| < \frac{1}{4} \][/tex]
Thus, the series converges for \( x \) in the interval \( 1 - \frac{1}{4} < x < 1 + \frac{1}{4} \), or \( \frac{3}{4} < x < \frac{5}{4} \).
5. Power Series for \( \int \frac{\cos (x) - 1}{x} dx \):
Start with the Maclaurin series for \( \cos(x) \):
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Then,
[tex]\[ \cos(x) - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Dividing by \( x \):
[tex]\[ \frac{\cos(x) - 1}{x} = -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \][/tex]
Integrating term by term:
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \cdots + C \][/tex]
[tex]\[ = -\frac{x^2}{4} + \frac{x^4}{96} - \frac{x^6}{4320} + \cdots + C \][/tex]
So,
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(2n)!} + C \][/tex]
This completes the power series manipulations and the given problems.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.