Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's address each of the problems one by one:
1. Power Series for \( f(x) = \sqrt{16 - x^2} \):
To find a power series for \( f(x) = \sqrt{16 - x^2} \) around \( x = 0 \), we can use the Taylor series expansion. This is generally cumbersome because \( f(x) \) isn’t expressed in a typical series-friendly form. However, there’s a known expansion for the square root function:
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \left(\frac{x}{4}\right)^2} \][/tex]
Expanding \( \sqrt{1 - u} \) using the binomial series, where \( u = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - u} \approx 1 - \frac{u}{2} - \frac{u^2}{8} - \frac{u^3}{16} - \cdots \][/tex]
Substitute \( u = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - \frac{x^2}{16}} \approx 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \][/tex]
Therefore,
[tex]\[ \sqrt{16 - x^2} = 4 \left( 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \right) \][/tex]
[tex]\[ = 4 - \frac{x^2}{8} - \frac{x^4}{128} - \frac{x^6}{2048} - \cdots \][/tex]
2. Power Series for \( g(x) = (16 - x)^7 \) about \( x = 0 \):
For \( g(x) = (16 - x)^7 \), we can substitute \( u = x/16 \):
[tex]\[ g(x) = (16(1 - \frac{x}{16}))^7 = 16^7 (1 - \frac{x}{16})^7 \][/tex]
Expanding \( (1 - \frac{x}{16})^7 \) using the binomial theorem:
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
Thus,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
[tex]\[ = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
3. Power Series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \):
We use \( u = x - 1 \), so \( f(x) = \sqrt{2 + u + 1} = \sqrt{3 + u} \):
Expanding \( \sqrt{3 + u} \):
[tex]\[ \sqrt{3 + u} = \sqrt{3} \left( 1 + \frac{u}{3} \right)^{1/2} \][/tex]
Using the binomial expansion for \( \left(1 + \frac{u}{3}\right)^{1/2} \):
[tex]\[ \sqrt{3} \left(1 + \frac{u}{3}\right)^{1/2} \approx \sqrt{3} \left( 1 + \frac{u}{6} - \frac{u^2}{72} + \cdots \right) \][/tex]
Substituting \( u = x - 1 \):
[tex]\[ f(x) = \sqrt{3 + (x-1)} \approx \sqrt{3} \left(1 + \frac{x-1}{6} - \frac{(x-1)^2}{72} + \cdots \right) \][/tex]
4. Convergence of \( \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \):
To determine convergence, you can use the ratio test:
Consider the term \( a_n = \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \).
The ratio \(\frac{a_{n+1}}{a_n} \):
[tex]\[ \frac{\frac{4^{n+2}(x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1}}{\frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1}} = 4(x-1) \cdot \frac{4}{\frac{(n+1)^3 + 2(n+1) + 1}{n^3 + 2n + 1}} \][/tex]
Generally, the ratio would simplify to \( 4(x-1) \):
[tex]\[ 4|x-1| < 1 \implies |x-1| < \frac{1}{4} \][/tex]
Thus, the series converges for \( x \) in the interval \( 1 - \frac{1}{4} < x < 1 + \frac{1}{4} \), or \( \frac{3}{4} < x < \frac{5}{4} \).
5. Power Series for \( \int \frac{\cos (x) - 1}{x} dx \):
Start with the Maclaurin series for \( \cos(x) \):
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Then,
[tex]\[ \cos(x) - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Dividing by \( x \):
[tex]\[ \frac{\cos(x) - 1}{x} = -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \][/tex]
Integrating term by term:
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \cdots + C \][/tex]
[tex]\[ = -\frac{x^2}{4} + \frac{x^4}{96} - \frac{x^6}{4320} + \cdots + C \][/tex]
So,
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(2n)!} + C \][/tex]
This completes the power series manipulations and the given problems.
1. Power Series for \( f(x) = \sqrt{16 - x^2} \):
To find a power series for \( f(x) = \sqrt{16 - x^2} \) around \( x = 0 \), we can use the Taylor series expansion. This is generally cumbersome because \( f(x) \) isn’t expressed in a typical series-friendly form. However, there’s a known expansion for the square root function:
[tex]\[ f(x) = \sqrt{16 - x^2} = 4 \sqrt{1 - \left(\frac{x}{4}\right)^2} \][/tex]
Expanding \( \sqrt{1 - u} \) using the binomial series, where \( u = \left(\frac{x}{4}\right)^2 = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - u} \approx 1 - \frac{u}{2} - \frac{u^2}{8} - \frac{u^3}{16} - \cdots \][/tex]
Substitute \( u = \frac{x^2}{16} \):
[tex]\[ \sqrt{1 - \frac{x^2}{16}} \approx 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \][/tex]
Therefore,
[tex]\[ \sqrt{16 - x^2} = 4 \left( 1 - \frac{x^2}{32} - \frac{x^4}{512} - \frac{x^6}{8192} - \cdots \right) \][/tex]
[tex]\[ = 4 - \frac{x^2}{8} - \frac{x^4}{128} - \frac{x^6}{2048} - \cdots \][/tex]
2. Power Series for \( g(x) = (16 - x)^7 \) about \( x = 0 \):
For \( g(x) = (16 - x)^7 \), we can substitute \( u = x/16 \):
[tex]\[ g(x) = (16(1 - \frac{x}{16}))^7 = 16^7 (1 - \frac{x}{16})^7 \][/tex]
Expanding \( (1 - \frac{x}{16})^7 \) using the binomial theorem:
[tex]\[ (1 - \frac{x}{16})^7 = \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
Thus,
[tex]\[ g(x) = 16^7 \sum_{n=0}^{\infty} \binom{7}{n} \left( -\frac{x}{16} \right)^n \][/tex]
[tex]\[ = \sum_{n=0}^{\infty} \binom{7}{n} (-1)^n 16^{7-n} x^n \][/tex]
3. Power Series for \( f(x) = \sqrt{2 + x} \) about \( x = 1 \):
We use \( u = x - 1 \), so \( f(x) = \sqrt{2 + u + 1} = \sqrt{3 + u} \):
Expanding \( \sqrt{3 + u} \):
[tex]\[ \sqrt{3 + u} = \sqrt{3} \left( 1 + \frac{u}{3} \right)^{1/2} \][/tex]
Using the binomial expansion for \( \left(1 + \frac{u}{3}\right)^{1/2} \):
[tex]\[ \sqrt{3} \left(1 + \frac{u}{3}\right)^{1/2} \approx \sqrt{3} \left( 1 + \frac{u}{6} - \frac{u^2}{72} + \cdots \right) \][/tex]
Substituting \( u = x - 1 \):
[tex]\[ f(x) = \sqrt{3 + (x-1)} \approx \sqrt{3} \left(1 + \frac{x-1}{6} - \frac{(x-1)^2}{72} + \cdots \right) \][/tex]
4. Convergence of \( \sum_{n=0}^{\infty} \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \):
To determine convergence, you can use the ratio test:
Consider the term \( a_n = \frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1} \).
The ratio \(\frac{a_{n+1}}{a_n} \):
[tex]\[ \frac{\frac{4^{n+2}(x-1)^{n+1}}{(n+1)^3 + 2(n+1) + 1}}{\frac{4^{n+1}(x-1)^n}{n^3 + 2n + 1}} = 4(x-1) \cdot \frac{4}{\frac{(n+1)^3 + 2(n+1) + 1}{n^3 + 2n + 1}} \][/tex]
Generally, the ratio would simplify to \( 4(x-1) \):
[tex]\[ 4|x-1| < 1 \implies |x-1| < \frac{1}{4} \][/tex]
Thus, the series converges for \( x \) in the interval \( 1 - \frac{1}{4} < x < 1 + \frac{1}{4} \), or \( \frac{3}{4} < x < \frac{5}{4} \).
5. Power Series for \( \int \frac{\cos (x) - 1}{x} dx \):
Start with the Maclaurin series for \( \cos(x) \):
[tex]\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Then,
[tex]\[ \cos(x) - 1 = -\frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \][/tex]
Dividing by \( x \):
[tex]\[ \frac{\cos(x) - 1}{x} = -\frac{x}{2!} + \frac{x^3}{4!} - \frac{x^5}{6!} + \cdots \][/tex]
Integrating term by term:
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\frac{x^2}{2 \cdot 2!} + \frac{x^4}{4 \cdot 4!} - \frac{x^6}{6 \cdot 6!} + \cdots + C \][/tex]
[tex]\[ = -\frac{x^2}{4} + \frac{x^4}{96} - \frac{x^6}{4320} + \cdots + C \][/tex]
So,
[tex]\[ \int \frac{\cos(x) - 1}{x} dx = -\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)(2n)!} + C \][/tex]
This completes the power series manipulations and the given problems.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.