Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the equation of the line passing through point \( C \) and perpendicular to line segment \( \overline{A B} \), follow these steps:
1. Find the slope of line segment \( \overline{A B} \):
The coordinates of point \( A \) are \( (2, 9) \) and those of point \( B \) are \( (8, 4) \).
The slope \( m_{AB} \) is calculated as:
[tex]\[ m_{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]
2. Find the slope of the line perpendicular to \( \overline{A B} \):
The slope \( m_{\perpendicular} \) of the perpendicular line is the negative reciprocal of \( m_{AB} \):
[tex]\[ m_{\perpendicular} = -\frac{1}{m_{AB}} = -\frac{1}{-\frac{5}{6}} = \frac{6}{5} = 1.2 \][/tex]
3. Use the point-slope form to write the equation of the line passing through \( C(-3, -2) \):
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( (x_1, y_1) \) is point \( C \) and \( m \) is the slope. So:
[tex]\[ y - (-2) = 1.2(x - (-3)) \][/tex]
4. Convert to slope-intercept form \( y = mx + b \):
Simplify and solve for \( y \):
[tex]\[ y + 2 = 1.2(x + 3) \][/tex]
[tex]\[ y + 2 = 1.2x + 3.6 \][/tex]
[tex]\[ y = 1.2x + 3.6 - 2 \][/tex]
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, the complete equation of the line passing through point \( C \) and perpendicular to \( \overline{A B} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
Thus, the equation in the given format is:
[tex]\[ y = \boxed{1.2}x + \boxed{1.6} \][/tex]
1. Find the slope of line segment \( \overline{A B} \):
The coordinates of point \( A \) are \( (2, 9) \) and those of point \( B \) are \( (8, 4) \).
The slope \( m_{AB} \) is calculated as:
[tex]\[ m_{AB} = \frac{B_y - A_y}{B_x - A_x} = \frac{4 - 9}{8 - 2} = \frac{-5}{6} \][/tex]
2. Find the slope of the line perpendicular to \( \overline{A B} \):
The slope \( m_{\perpendicular} \) of the perpendicular line is the negative reciprocal of \( m_{AB} \):
[tex]\[ m_{\perpendicular} = -\frac{1}{m_{AB}} = -\frac{1}{-\frac{5}{6}} = \frac{6}{5} = 1.2 \][/tex]
3. Use the point-slope form to write the equation of the line passing through \( C(-3, -2) \):
The point-slope form of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where \( (x_1, y_1) \) is point \( C \) and \( m \) is the slope. So:
[tex]\[ y - (-2) = 1.2(x - (-3)) \][/tex]
4. Convert to slope-intercept form \( y = mx + b \):
Simplify and solve for \( y \):
[tex]\[ y + 2 = 1.2(x + 3) \][/tex]
[tex]\[ y + 2 = 1.2x + 3.6 \][/tex]
[tex]\[ y = 1.2x + 3.6 - 2 \][/tex]
[tex]\[ y = 1.2x + 1.6 \][/tex]
So, the complete equation of the line passing through point \( C \) and perpendicular to \( \overline{A B} \) is:
[tex]\[ y = 1.2x + 1.6 \][/tex]
Thus, the equation in the given format is:
[tex]\[ y = \boxed{1.2}x + \boxed{1.6} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.