Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the highest common factor (HCF) of the numbers \(A\) and \(B\), where:
[tex]\[ A = 2^2 \times 3^1 \times 5^1 \][/tex]
[tex]\[ B = 2^3 \times 3^2 \times 5^1 \][/tex]
we need to follow these steps:
1. Identify the prime factors of each number with their respective exponents:
- The prime factorization of \(A\) is \(2^2 \times 3^1 \times 5^1\).
- The prime factorization of \(B\) is \(2^3 \times 3^2 \times 5^1\).
2. List the common prime factors and their smallest exponents from each factorization:
- For \(2\): The exponents are 2 (from \(A\)) and 3 (from \(B\)). The minimum exponent is 2.
- For \(3\): The exponents are 1 (from \(A\)) and 2 (from \(B\)). The minimum exponent is 1.
- For \(5\): The exponents are both 1 in \(A\) and \(B\). The minimum exponent is 1.
3. Construct the HCF by multiplying these primes raised to their smallest exponents:
- The smallest exponent for 2 is 2, hence \(2^2\).
- The smallest exponent for 3 is 1, hence \(3^1\).
- The smallest exponent for 5 is 1, hence \(5^1\).
4. Calculate the HCF:
[tex]\[ HCF = 2^2 \times 3^1 \times 5^1 = 4 \times 3 \times 5 = 12 \times 5 = 60 \][/tex]
So, the highest common factor (HCF) of [tex]\(A\)[/tex] and [tex]\(B\)[/tex] is [tex]\(60\)[/tex].
[tex]\[ A = 2^2 \times 3^1 \times 5^1 \][/tex]
[tex]\[ B = 2^3 \times 3^2 \times 5^1 \][/tex]
we need to follow these steps:
1. Identify the prime factors of each number with their respective exponents:
- The prime factorization of \(A\) is \(2^2 \times 3^1 \times 5^1\).
- The prime factorization of \(B\) is \(2^3 \times 3^2 \times 5^1\).
2. List the common prime factors and their smallest exponents from each factorization:
- For \(2\): The exponents are 2 (from \(A\)) and 3 (from \(B\)). The minimum exponent is 2.
- For \(3\): The exponents are 1 (from \(A\)) and 2 (from \(B\)). The minimum exponent is 1.
- For \(5\): The exponents are both 1 in \(A\) and \(B\). The minimum exponent is 1.
3. Construct the HCF by multiplying these primes raised to their smallest exponents:
- The smallest exponent for 2 is 2, hence \(2^2\).
- The smallest exponent for 3 is 1, hence \(3^1\).
- The smallest exponent for 5 is 1, hence \(5^1\).
4. Calculate the HCF:
[tex]\[ HCF = 2^2 \times 3^1 \times 5^1 = 4 \times 3 \times 5 = 12 \times 5 = 60 \][/tex]
So, the highest common factor (HCF) of [tex]\(A\)[/tex] and [tex]\(B\)[/tex] is [tex]\(60\)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.